精英家教网 > 高中数学 > 题目详情
18.已知曲线C1:$\left\{\begin{array}{l}{x=1+t}\\{y=-3-\frac{3}{4}t}\end{array}\right.$(t为参数)与曲线C2:ρ2-4ρ•cosθ-21=0交于A,B两点,求线段AB的长,并说明C1,C2分别是什么曲线?

分析 曲线C1:$\left\{\begin{array}{l}{x=1+t}\\{y=-3-\frac{3}{4}t}\end{array}\right.$(t为参数),把t=x-1代入y=-3-$\frac{3}{4}$t,可得普通方程.曲线C2:ρ2-4ρ•cosθ-21=0,利用互化公式可得:直角坐标方程.求出圆心曲线C2到直线的距离d,可得|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$.

解答 解:曲线C1:$\left\{\begin{array}{l}{x=1+t}\\{y=-3-\frac{3}{4}t}\end{array}\right.$(t为参数),把t=x-1代入y=-3-$\frac{3}{4}$t,可得y=-3-$\frac{3}{4}$(x-1),化为:3x+4y+9=0,因此曲线C1表示直线.
曲线C2:ρ2-4ρ•cosθ-21=0,利用互化公式可得:x2+y2-4x-21=0,配方为(x-2)2+y2=25,曲线C2表示圆心为C2(2,0),半径为r=5.
圆心曲线C2到直线的距离d=$\frac{|2×3+0+9|}{\sqrt{{3}^{2}+{4}^{2}}}$=3,
∴|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$=2×$\sqrt{{5}^{2}-{3}^{2}}$=8.

点评 本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、点到直线的距离公式、直线与圆相交弦长公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知圆柱M的底面半径为2,高为$\frac{2\sqrt{3}}{3}$,圆锥N的底面直径和母线长相等,若圆柱M 和圆锥N的体积相同,则圆锥N的底面半径为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,a1=1,且点P(an,Sn)(其中n≥1且n∈N*)在直线4x-3y-1=0上,数列$\{\frac{1}{b_n}\}$是首项为-1,公差为-2的等差数列.
(1)求数列{an},{bn}的通项公式;
(2)设${c_n}=\frac{1}{{{a_n}{b_n}}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“?x∈R,x2-2x+1<0”的否定是(  )
A.?x∈R,x2-2x+1≥0B.?x∈R,x2-2x+1>0C.?x∈R,x2-2x+1≥0D.?x∈R,x2-2x+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“任意x∈R,|x|+x2≥0”的否定是(  )
A.任意x∈R,|x|+x2<0B.存在x∈R,|x|+x2≤0
C.存在x0∈R,|x0|+x02<0D.存在x0∈R,|x0|+x02≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数y=f(2x)的定义域是[1,2],则函数f(log2x)的定义域是(  )
A.[1,2]B.[4,16]C.[0,1]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的前n项和为Sn,且S6=S3+14,a6=10-a4,a4>a3
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}中,bn=log2 an,求数列{an•bn }的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为A1B1,CD的中点.
(1)求直线EC与平面B1BCC1所成角的大小的正弦值;
(2)求二面角E-AF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知两个定点A(-2,0),B(1,0),动点P满足|PA|=2|PB|.设动点P的轨迹为曲线C,过点(0,-3)的直线l与曲线C交于不同的两点D(x1,y1),E(x2,y2).
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)求直线l斜率的取值范围;
(Ⅲ)若x1x2+y1y2=3,求|DE|.

查看答案和解析>>

同步练习册答案