精英家教网 > 高中数学 > 题目详情
3.已知点A,B,C均在球O的表面上,∠BAC=$\frac{2π}{3},BC=4\sqrt{3}$,球O到平面ABC的距离为3,则球O的表面积为100π.

分析 运用正弦定理可得△ABC的外接圆的直径2r,再由球的半径和球心到截面的距离、及截面圆的半径构成直角三角形,即可求得球的半径,再由球的表面积公式计算即可得到.

解答 解:由于∠BAC=$\frac{2π}{3},BC=4\sqrt{3}$,
则△ABC的外接圆的直径2r=$\frac{4\sqrt{3}}{\frac{\sqrt{3}}{2}}$=8,
即有r=4,
由于球心O到平面ABC的距离为3,
则由勾股定理可得,球的半径R=5,
即有此球O的表面积为S=4πR2=4π×25=100π.
故答案为100π.

点评 本题考查球的表面积的求法,主要考查球的截面的性质:球的半径和球心到截面的距离、及截面圆的半径构成直角三角形,同时考查正弦定理的运用:求三角形的外接圆的直径,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知向$\overrightarrow{a}$=(1,n),$\overrightarrow{b}$=(-1,n),$\overrightarrow{a}$垂直于$\overrightarrow{b}$,则|$\overrightarrow{a}$|=(  )
A.1B.$\frac{\sqrt{6}}{2}$C.4D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C的对边分别为a,b,c,已知$\frac{3c-a}{b}$=$\frac{cosA-3cosC}{cosB}$.
(1)求$\frac{sinA}{sinC}$的值;
(2)若B为钝角,b=10,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.$\overrightarrow{a}$,$\overrightarrow{b}$是两个向量,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设△ABC的内角A,B,C所对的边分别为a,b,c若cos2$\frac{B}{2}=\frac{a+c}{2c}$,则△ABC的形状为(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)是定义在[a,b]上的函数,若存在$\hat x∈(a,b)$,使得f(x)在$[a,\hat x]$上单调递增,在$[\hat x,b]$上单调递减,则称f(x)为[a,b]上的单峰函数,$\hat x$称为峰点,包含峰点的区间称
为含峰区间;
(1)判断下列函数:①f1(x)=x-2x2,②f2(x)=|log2(x+0.5)|,哪些是“[0,1]上的单峰函数”?若是,指出峰点,若不是,说明理由;
(2)若函数f(x)=ax3+x(a<0)是[1,2]上的单峰函数,求实数a的取值范围;
(3)设f(x)是[a,b]上的单峰函数,若m,n∈(a,b),m<n,且f(m)≥f(n),求证:(a,n)为f(x)的含峰区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{{{2^x}+a}}{{{2^x}-1}}$是奇函数.
(1)求a的值;   
(2)解不等式f(x)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.四个平面互不平行,也不重合,则它们的交线数不可能是(  )
A.1条B.2条C.4条D.6条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)={e^x}-\frac{1}{2}{(x+a)^2}$.
(1)若曲线y=f(x)在点x=0处的切线斜率为1,求函数f(x)的单调区间;
(2)若x≥0时,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案