精英家教网 > 高中数学 > 题目详情
13.已知向$\overrightarrow{a}$=(1,n),$\overrightarrow{b}$=(-1,n),$\overrightarrow{a}$垂直于$\overrightarrow{b}$,则|$\overrightarrow{a}$|=(  )
A.1B.$\frac{\sqrt{6}}{2}$C.4D.$\sqrt{2}$

分析 利用两个向量垂直的性质,求出n,再根据向量的模的定义求得|$\overrightarrow{a}$|

解答 解:$\overrightarrow{a}$=(1,n),$\overrightarrow{b}$=(-1,n),$\overrightarrow{a}$垂直于$\overrightarrow{b}$,
∴-1+n2=0,
∴n2=1,
∴|$\overrightarrow{a}$|=$\sqrt{1+{n}^{2}}$=$\sqrt{2}$,
故选:D

点评 本题主要考查两个向量垂直的性质,两个向量坐标形式的运算,求向量的模,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的通项公式为${a_n}={(-1)^{n+1}}•{n^2}$,其前n项和为Sn
(1)求S1,S2,S3,S4,并猜想Sn的值;
(2)用数学归纳法证明(1)中所猜想的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知菱形ABCD的边长为6,∠BAD=60°,对角线AC、BD相交于O,将菱形ABCD沿对角线AC折起,使BD=3$\sqrt{2}$,得到三棱锥B-ACD.

(1)若M是BC的中点,求证:直线OM∥平面ABD;
(2)求三棱锥B-ACD的体积;
(3)若N是BD上的动点,求当直线CN与平面OBD所成角最大时,二面角N-AC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在锐角△ABC中,已知$AC=\sqrt{2},AB=\frac{{\sqrt{6}+\sqrt{2}}}{2},A=60°$.
(Ⅰ)求BC边的长;
(Ⅱ)分别用正弦定理、余弦定理求B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某商人如果将进货单价为8元的商品按每件10元出售时,每天可销售100件,现他采用提高售价,减少进货量的办法增加利润,已知这种商品每件销售价提高1元,销售量就减少5件,问他将销售价每件定为多少元时,才能使得每天所赚的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知λ,μ为常数,且为正整数,λ为质数且大于2,无穷数列{an}的各项均为正整数,其前n项和为Sn,对任意正整数n,2Sn=λan-μ,数列{an}中任意两不同项的和构成集合A.
(1)证明无穷数列{an}为等比数列,并求λ的值;
(2)如果2010∈A,求μ的值;
(3)当n≥1,设集合${B_n}=\{x|5μ•{3^{n-1}}<x<5μ•{3^n},x∈A\}$中元素的个数记为bn,求bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B=BC,B1C1∥BC,B1C1=$\frac{1}{2}$BC
(I)求证:AB1∥平面A1C1C;
(II)求直线BC1与平面A1C1C成角的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和${S_n}=\frac{{{3^n}-1}}{2}$,令bn=log9an+1
(1)求数列{bn}的通项公式;
(2)若数列{bn}的前n项和为Tn,数列$\{\frac{1}{T_n}\}$的前n项和为Hn,求H2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A,B,C均在球O的表面上,∠BAC=$\frac{2π}{3},BC=4\sqrt{3}$,球O到平面ABC的距离为3,则球O的表面积为100π.

查看答案和解析>>

同步练习册答案