精英家教网 > 高中数学 > 题目详情
18.已知λ,μ为常数,且为正整数,λ为质数且大于2,无穷数列{an}的各项均为正整数,其前n项和为Sn,对任意正整数n,2Sn=λan-μ,数列{an}中任意两不同项的和构成集合A.
(1)证明无穷数列{an}为等比数列,并求λ的值;
(2)如果2010∈A,求μ的值;
(3)当n≥1,设集合${B_n}=\{x|5μ•{3^{n-1}}<x<5μ•{3^n},x∈A\}$中元素的个数记为bn,求bn

分析 (1)Sn=λan-μ.当n≥2时,Sn-1=λan-1-μ,可得$\frac{λ}{λ-2}=1+\frac{2}{λ-2}$为正整数,即可得出正整数λ.
(2)由(1)可得:Sn=2an-μ,可得an=μ•2n-1,因此A={μ(2i-1+2j-1)|1≤i<j,i,j∈N*},由于2015∈A,可得2015=μ(2i-1+2j-1)=μ•2i-1(1+2j-i)=5×13×31,利用2i-1为偶数时,上式不成立,因此必有2i-1=1,可得i=1,即可得出j,μ.
(3)当n≥1时,集合集合${B_n}=\{x|5μ•{3^{n-1}}<x<5μ•{3^n},x∈A\}$,即即5μ•3n-1<μ(3i-1+3j-1)<5μ•3n,1≤i<j,i,j∈N*Bn中元素的个数,等价于满足5•3n<3i+3j<5•3n+1的不同解(i,j),只有j=n+2才成立,利用5•3n<31+3n+2<32+3n+2<…<3n+3n+2<3n+1+3n+2=4•3n+1<5•3n+1,即可得出.(n∈N*).

解答 解:(1)当n≥2时,2Sn=λan-μ,2Sn-1=λan-1-μ,两式相减得:2an=λan-λan-1(λ为质数且大于2),$\frac{a_n}{{{a_{n-1}}}}=\frac{λ}{λ-2}$,所以{an}为等比数列,又{an}各项均为正整数,则$\frac{λ}{λ-2}=1+\frac{2}{λ-2}$为正整数,λ为质数,则λ=3
(2)由(1)得:2Sn=3an-μ,当n=1时,a1=μ,则${a_n}=μ•{3^{n-1}}$
所以A={μ(3i-1+3j-1)|1≤i<j,i,j∈N*}
如果2010∈A,则2010=μ(3i-1+3j-1)=μ3i-1(1+3j-i)=2×3×5×67
因为j-i>0,则1+3j-i必为不小于4的偶数,则
因1+3j-i=2×3时,无解;因1+3j-i=2×67时,无解;因1+3j-i=2×3×5,无解;
因1+3j-i=2×3×67,无解;因1+3j-i=2×5×67,无解;
因1+3j-i=2×3×5×67=2010,无解;
当1+3j-i=2×5⇒j-i=2,μ•3i-1=201=3×67,
当i-1=1时,μ=67,所以2010=67(32-1+34-1)∈A
当i-1=0时,μ=201,所以2010=201(31-1+33-1)∈A
综上,μ=67或μ=201
(3)当n≥1时,${B_n}=\{x|5μ•{3^{n-1}}<x<5μ•{3^n},x∈A\}$
即5μ•3n-1<μ(3i-1+3j-1)<5μ•3n,1≤i<j,i,j∈N*Bn中元素的个数,等价于满足5•3n<3i+3j<5•3n+1的不同解(i,j)
如果j>n+2,则3j+3i≥3i+3n+3=3i+9•3n+1>5•3n+1,矛盾.
如果j<n+2,则3j+3i≤3i+3n+1≤3n+3n+1≤4•3n<5•3n,矛盾.
从而,j=n+2
又因为(31+3n+2)-5•3n=3+4•3n>0
所以5•3n<31+3n+2<32+3n+2<…<3n+3n+2<3n+1+3n+2=4•3n+1<5•3n+1
即i=1,2,…,n,n+1,共n+1个不同的解(i,j),即共n+1个不同x∈Bn,所以${b_n}=n+1(n∈{N^*})$.

点评 本题考查了等比数列的定义及其通项公式、递推式的应用、分类讨论思想方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列集合中表示同一集合的是(  )
A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}
C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各式运算错误的是(  )
A.(-a2b)2•(-ab23=-a7b8B.[-(a32•(-b23]3=a18b18
C.(-a32•(-b23=a6b6D.(-a2b33÷(-ab23=a3b3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)在R上是奇函数,当x∈(0,2)时,f(x)=2x2,则f(-1)=(  )
A.-2B.2C.-98D.98

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向$\overrightarrow{a}$=(1,n),$\overrightarrow{b}$=(-1,n),$\overrightarrow{a}$垂直于$\overrightarrow{b}$,则|$\overrightarrow{a}$|=(  )
A.1B.$\frac{\sqrt{6}}{2}$C.4D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\left\{\begin{array}{l}{x^4}+1,x<0\\{4^x}-1,x>0\end{array}\right.$,则方程f(x)=5的解集是(  )
A.{$-\sqrt{2}$,$\sqrt{2}$,log4 6}B.{$-\sqrt{2}$,log4 6}C.{$\sqrt{2}$,log4 6}D.{$-\sqrt{2}$,$\sqrt{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=2x2,则f′(1)等于(  )
A.4B.2C.4+2△xD.4+2(△x)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示的算法流程图中,若f(x)=sinx,g(x)=tanx,$h(-\frac{π}{6})$的值等(  )
A.-$\frac{{\sqrt{3}}}{3}$B.-$\frac{1}{2}$C.-$\sqrt{3}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)是定义在[a,b]上的函数,若存在$\hat x∈(a,b)$,使得f(x)在$[a,\hat x]$上单调递增,在$[\hat x,b]$上单调递减,则称f(x)为[a,b]上的单峰函数,$\hat x$称为峰点,包含峰点的区间称
为含峰区间;
(1)判断下列函数:①f1(x)=x-2x2,②f2(x)=|log2(x+0.5)|,哪些是“[0,1]上的单峰函数”?若是,指出峰点,若不是,说明理由;
(2)若函数f(x)=ax3+x(a<0)是[1,2]上的单峰函数,求实数a的取值范围;
(3)设f(x)是[a,b]上的单峰函数,若m,n∈(a,b),m<n,且f(m)≥f(n),求证:(a,n)为f(x)的含峰区间.

查看答案和解析>>

同步练习册答案