精英家教网 > 高中数学 > 题目详情
7.如图所示的算法流程图中,若f(x)=sinx,g(x)=tanx,$h(-\frac{π}{6})$的值等(  )
A.-$\frac{{\sqrt{3}}}{3}$B.-$\frac{1}{2}$C.-$\sqrt{3}$D.-$\frac{{\sqrt{3}}}{2}$

分析 根据流程图,可得h(x)是f(x)与g(x)函数值中较大的函数值,即可得出结论.

解答 解:∵sin(-$\frac{π}{6}$)=-$\frac{1}{2}$,tan(-$\frac{π}{6}$)=-$\frac{\sqrt{3}}{3}$,-$\frac{1}{2}$>-$\frac{\sqrt{3}}{3}$,
∴$h(-\frac{π}{6})$=-$\frac{1}{2}$,
故选B.

点评 本题考查流程图,考查三角函数值的计算,理解流程图的含义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知{an}为正项等比数列,$S_n^{\;}$是它的前n项和,若a3与a5的等比中项是2,且a4与2a7的等差中项为$\frac{5}{4}$,则S5=(  )
A.35B.33C.31D.29

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知λ,μ为常数,且为正整数,λ为质数且大于2,无穷数列{an}的各项均为正整数,其前n项和为Sn,对任意正整数n,2Sn=λan-μ,数列{an}中任意两不同项的和构成集合A.
(1)证明无穷数列{an}为等比数列,并求λ的值;
(2)如果2010∈A,求μ的值;
(3)当n≥1,设集合${B_n}=\{x|5μ•{3^{n-1}}<x<5μ•{3^n},x∈A\}$中元素的个数记为bn,求bn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知P为函数$y=\frac{1}{4}{x^2}$图象上一动点,过点P做x轴的垂线,垂足为B,已知A(3,2),则|PA|+|PB|的最小值为(  )
A.$\sqrt{5}+\sqrt{2}$B.$\sqrt{10}-1$C.$2\sqrt{3}+2$D.$3\sqrt{5}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和${S_n}=\frac{{{3^n}-1}}{2}$,令bn=log9an+1
(1)求数列{bn}的通项公式;
(2)若数列{bn}的前n项和为Tn,数列$\{\frac{1}{T_n}\}$的前n项和为Hn,求H2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an},a1=7,a2=3,an+1=3an-2,n≥2.
(1)求数列{an}的通项公式;
(2)若数列bn=$\frac{{a}_{n}-1}{2}$数列{cn}满足cn=log3bn,求数列{cnbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足2acosC=2b-$\sqrt{3}$c.
(1)求角A;
(2)若B=$\frac{π}{6}$,且BC边上的中线AM的长为$\sqrt{7}$,求此时△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.椭圆$\frac{x^2}{4}+{y^2}$=1的右焦点为F,点P在椭圆上,如果线段PF的中点M在y轴上,那么点M的纵坐标为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知各项为正数的数列{an}的前{Sn},满足$\sqrt{2{S_n}}=\frac{{{a_n}+2}}{2}$
(Ⅰ)求证:{an}为等差数列,并求其通项公式;
(Ⅱ)设{bn}满足bn+1=2bn,b2=2,求数列{anbn}的前n项和为Tn

查看答案和解析>>

同步练习册答案