精英家教网 > 高中数学 > 题目详情
2.已知数列{an}的前n项和${S_n}=\frac{{{3^n}-1}}{2}$,令bn=log9an+1
(1)求数列{bn}的通项公式;
(2)若数列{bn}的前n项和为Tn,数列$\{\frac{1}{T_n}\}$的前n项和为Hn,求H2017

分析 (1)由数列的前n项和求出数列通项公式,代入bn=log9an+1,利用对数的运算性质求得数列{bn}的通项公式;
(2)求出数列{bn}的前n项和为Tn,利用裂项相消法求得数列$\{\frac{1}{T_n}\}$的前n项和为Hn,则H2017可求.

解答 解:(1)当n=1时,${a}_{1}={S}_{1}=\frac{3-1}{2}=1$;
当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}=\frac{{3}^{n}-1-{3}^{n-1}+1}{2}={3}^{n-1}$.
a1=1适合上式,
∴${a}_{n}={3}^{n-1}$.
则bn=log9an+1=$lo{g}_{9}{3}^{n}=\frac{n}{2}$,即数列{bn}的通项公式${b}_{n}=\frac{n}{2}$;
(2)由${b}_{n}=\frac{n}{2}$,得${T}_{n}=\frac{1}{2}(1+2+3+…+n)=\frac{n(n+1)}{4}$.
则$\frac{1}{{T}_{n}}=\frac{4}{n(n+1)}=4(\frac{1}{n}-\frac{1}{n+1})$.
于是${H}_{n}=4(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n}-\frac{1}{n+1})$=$4(1-\frac{1}{n+1})=\frac{4n}{n+1}$,
则${H}_{2017}=\frac{4×2017}{2018}=\frac{4034}{1009}$.

点评 本题考查数列递推式,训练了由数列的前n项和求数列的通项公式,训练了利用裂项相消法求数列的和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知半径为$2\sqrt{3}$的球内有一内接正方体,若在球内任取一点,则该点在正方体内的概率为$\frac{2\sqrt{3}}{3π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向$\overrightarrow{a}$=(1,n),$\overrightarrow{b}$=(-1,n),$\overrightarrow{a}$垂直于$\overrightarrow{b}$,则|$\overrightarrow{a}$|=(  )
A.1B.$\frac{\sqrt{6}}{2}$C.4D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=2x2,则f′(1)等于(  )
A.4B.2C.4+2△xD.4+2(△x)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足x2+y2-4x-6y+12=0,则x-y的最大值为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示的算法流程图中,若f(x)=sinx,g(x)=tanx,$h(-\frac{π}{6})$的值等(  )
A.-$\frac{{\sqrt{3}}}{3}$B.-$\frac{1}{2}$C.-$\sqrt{3}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C的对边分别为a,b,c,已知$\frac{3c-a}{b}$=$\frac{cosA-3cosC}{cosB}$.
(1)求$\frac{sinA}{sinC}$的值;
(2)若B为钝角,b=10,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.$\overrightarrow{a}$,$\overrightarrow{b}$是两个向量,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.四个平面互不平行,也不重合,则它们的交线数不可能是(  )
A.1条B.2条C.4条D.6条

查看答案和解析>>

同步练习册答案