精英家教网 > 高中数学 > 题目详情
14.在△ABC中,内角A,B,C的对边分别为a,b,c,已知$\frac{3c-a}{b}$=$\frac{cosA-3cosC}{cosB}$.
(1)求$\frac{sinA}{sinC}$的值;
(2)若B为钝角,b=10,求a的取值范围.

分析 (1)利用正弦定理、和差公式即可得出.
(2)由(1)及正弦定理知$\frac{a}{c}=\frac{1}{3}$,即c=3a.由题意:$\left\{\begin{array}{l}{b=10}\\{a+c>b}\\{{a}^{2}+{c}^{2}<{b}^{2}}\end{array}\right.$,解之即可得出.

解答 解:(1)由正弦定理:设$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$=k,又$\frac{3c-a}{b}$=$\frac{cosA-3cosC}{cosB}$.
∴$\frac{3sinC-sinA}{sinB}$=$\frac{cosA-3cosC}{cosB}$.
化为:(cosA-3cosC)sinB=(3sinC-sinA)cosB,
化简得:cosAsinB+sinAcosB=3(sinBcosC+cosBsinC),即sin(A+B)=3sin(B+C),
∴sinC=3sinA,即$\frac{sinA}{sinC}$=$\frac{1}{3}$.
(2)由(1)及正弦定理知$\frac{a}{c}=\frac{1}{3}$,即c=3a.
由题意:$\left\{\begin{array}{l}{b=10}\\{a+c>b}\\{{a}^{2}+{c}^{2}<{b}^{2}}\end{array}\right.$,解之得:$\frac{5}{2}<a<\sqrt{10}$,
则a的取值范围是$(\frac{5}{2},\sqrt{10})$.

点评 本题考查了正弦定理余弦定理、和差公式、三角形三边大小关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知菱形ABCD的边长为6,∠BAD=60°,对角线AC、BD相交于O,将菱形ABCD沿对角线AC折起,使BD=3$\sqrt{2}$,得到三棱锥B-ACD.

(1)若M是BC的中点,求证:直线OM∥平面ABD;
(2)求三棱锥B-ACD的体积;
(3)若N是BD上的动点,求当直线CN与平面OBD所成角最大时,二面角N-AC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B=BC,B1C1∥BC,B1C1=$\frac{1}{2}$BC
(I)求证:AB1∥平面A1C1C;
(II)求直线BC1与平面A1C1C成角的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和${S_n}=\frac{{{3^n}-1}}{2}$,令bn=log9an+1
(1)求数列{bn}的通项公式;
(2)若数列{bn}的前n项和为Tn,数列$\{\frac{1}{T_n}\}$的前n项和为Hn,求H2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若x>0,y>0,且$\frac{1}{x}+\frac{1}{y}=\frac{1}{2}$,则xy有(  )
A.最大值16B.最小值$\frac{1}{16}$C.最小值16D.最小值$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足2acosC=2b-$\sqrt{3}$c.
(1)求角A;
(2)若B=$\frac{π}{6}$,且BC边上的中线AM的长为$\sqrt{7}$,求此时△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.等比数列$\left\{{a_n}\right\}满足:{a_1}=b-1(b>0且b≠1),{S_2}={b^2}-1$.
(1)求数列{an}的通项公式;
(2)当b=2时,记${b_n}=\frac{n+1}{{4{a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A,B,C均在球O的表面上,∠BAC=$\frac{2π}{3},BC=4\sqrt{3}$,球O到平面ABC的距离为3,则球O的表面积为100π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若等差数列{an}的前n项和为Sn,a4=4,S4=10,则数列$\left\{{\frac{1}{{\;{a_n}{a_{n+1}}\;}}}\right\}$的前2018项的和为$\frac{2018}{2019}$.

查看答案和解析>>

同步练习册答案