精英家教网 > 高中数学 > 题目详情
9.若x>0,y>0,且$\frac{1}{x}+\frac{1}{y}=\frac{1}{2}$,则xy有(  )
A.最大值16B.最小值$\frac{1}{16}$C.最小值16D.最小值$\frac{1}{2}$

分析 由已知可得$\frac{1}{x}、\frac{1}{y}$均为正数,然后结合基本不等式可得xy有最小值.

解答 解:由$\frac{1}{x}+\frac{1}{y}=\frac{1}{2}$,且x>0,y>0,
得$\frac{1}{2}=\frac{1}{x}+\frac{1}{y}≥2\sqrt{\frac{1}{xy}}$,∴$\sqrt{\frac{1}{xy}}≤\frac{1}{4}$,则xy≥16(当且仅当x=y=4时等号成立).
∴xy有最小值16.
故选:C.

点评 本题考查简单的线性规划,训练了利用基本不等式求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知A点坐标为$(-2\sqrt{3},0)$,B点坐标为$(2\sqrt{3},0)$,且动点M到A点的距离是8,线段MB的垂直平分线l交线段MA于点P.
(Ⅰ)求动点P的轨迹C方程.
(Ⅱ) 已知A(2,-1),过原点且斜率为k(k>0)的直线l与曲线C交于P,Q两点,求△APQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列各组函数表示相等函数的是(  )
A.$f(x)={({\sqrt{x}})^2}$和$g(x)=\sqrt{x^2}$B.$f(x)={({\root{3}{x+1}})^3}$和$g(x)=\root{3}{{{{({x+1})}^3}}}$
C.f(x)=2lgx和g(x)=lg x2D.f(x)=ln x-ln(x-1)和$g(x)=ln\frac{x}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足x2+y2-4x-6y+12=0,则x-y的最大值为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“$\left\{{x\left|{\frac{1}{x}≤1}\right.}\right\}$”是“{x|lnx≥0}”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C的对边分别为a,b,c,已知$\frac{3c-a}{b}$=$\frac{cosA-3cosC}{cosB}$.
(1)求$\frac{sinA}{sinC}$的值;
(2)若B为钝角,b=10,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=2sin(ωx+φ),(ω>0,0≤φ<2π)的部分图象如图所示,则f(x)=2sin(3x+$\frac{5π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设△ABC的内角A,B,C所对的边分别为a,b,c若cos2$\frac{B}{2}=\frac{a+c}{2c}$,则△ABC的形状为(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对于数列{an},a1=4,an+1=f(an),依照如表,则a2018等于(  )
x12345
f(x)54312
A.2B.1C.4D.5

查看答案和解析>>

同步练习册答案