精英家教网 > 高中数学 > 题目详情
4.“$\left\{{x\left|{\frac{1}{x}≤1}\right.}\right\}$”是“{x|lnx≥0}”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 利用不等式的解法与函数的单调性分别解出不等式,即可判断出结论.

解答 解:由$\frac{1}{x}≤$1,化为x(x-1)≥0,x≠0,解得x<0,或x≥1.
由lnx≥0,解得x≥1.
∴“$\left\{{x\left|{\frac{1}{x}≤1}\right.}\right\}$”是“{x|lnx≥0}”的必要不充分条件.
故选:B.

点评 本题考查了不等式的解法、函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆16x2+25y2=400
(Ⅰ)求椭圆的长轴长和短半轴的长   
(Ⅱ)求椭圆的焦点和顶点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C的对边分别为a,b,c,已知$\frac{cosB-2cosA}{cosC}$=$\frac{2a-b}{c}$
(1)求$\frac{a}{b}$的值;
(2)若角A是钝角,且c=3,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,“sinA=sinB”是“A=B”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设 Sn是数列 {an}的前 n 项和,且a1=-1,an+1=SnSn+1(n∈N*).
(1)求证数列{$\frac{1}{{S}_{n}}$}为等差数列,并求Sn
(2)求数列$\left\{{\frac{1}{{{a_{n+1}}}}}\right\}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若x>0,y>0,且$\frac{1}{x}+\frac{1}{y}=\frac{1}{2}$,则xy有(  )
A.最大值16B.最小值$\frac{1}{16}$C.最小值16D.最小值$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若点P(3,-4,5)在平面xoy内的射影为M,则OM的长为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,向量$\overrightarrow a=({{S_n},1})$,$\overrightarrow b=({{2^n}-1,\frac{1}{2}})$,满足条件$\overrightarrow a∥\overrightarrow b$,
(1)求数列{an}的通项公式;
(2)数列{bn}满足b1=1,bn+1-bn=1,cn=$\frac{b_n}{a_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.满足条件{2,3}⊆M⊆{1,2,3,4 }的集合M的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案