精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=2x2,则f′(1)等于(  )
A.4B.2C.4+2△xD.4+2(△x)2

分析 先求导,再代值计算即可.

解答 解:由f′(x)=4x,则f′(1)=4,
故选:A

点评 本题考查导数的运算,掌握基本初等函数的求导公式是解题之关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.给出下列命题:
(1)若函数h(x)=cos4x-sin4x,则h′($\frac{π}{2}$)=1;
(2)若函数g(x)=(x-1)(x-2)(x-3)…(x-2015)(x-2016),则g′(2016)=2015!;
(3)若函数f(x)=$\frac{sinx}{2+cosx}$的单调递增区间是(2kπ-$\frac{2π}{3}$,2kπ+$\frac{2π}{3}$)(k∈Z)
(4)若三次函数f(x)=ax3+bx2+cx+d,则“a+b+c=0”是“f(x)有极值点”的充分条件;
其中正确的命题序号为(2)、(3)、(4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在锐角△ABC中,已知$AC=\sqrt{2},AB=\frac{{\sqrt{6}+\sqrt{2}}}{2},A=60°$.
(Ⅰ)求BC边的长;
(Ⅱ)分别用正弦定理、余弦定理求B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知λ,μ为常数,且为正整数,λ为质数且大于2,无穷数列{an}的各项均为正整数,其前n项和为Sn,对任意正整数n,2Sn=λan-μ,数列{an}中任意两不同项的和构成集合A.
(1)证明无穷数列{an}为等比数列,并求λ的值;
(2)如果2010∈A,求μ的值;
(3)当n≥1,设集合${B_n}=\{x|5μ•{3^{n-1}}<x<5μ•{3^n},x∈A\}$中元素的个数记为bn,求bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B=BC,B1C1∥BC,B1C1=$\frac{1}{2}$BC
(I)求证:AB1∥平面A1C1C;
(II)求直线BC1与平面A1C1C成角的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知P为函数$y=\frac{1}{4}{x^2}$图象上一动点,过点P做x轴的垂线,垂足为B,已知A(3,2),则|PA|+|PB|的最小值为(  )
A.$\sqrt{5}+\sqrt{2}$B.$\sqrt{10}-1$C.$2\sqrt{3}+2$D.$3\sqrt{5}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和${S_n}=\frac{{{3^n}-1}}{2}$,令bn=log9an+1
(1)求数列{bn}的通项公式;
(2)若数列{bn}的前n项和为Tn,数列$\{\frac{1}{T_n}\}$的前n项和为Hn,求H2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足2acosC=2b-$\sqrt{3}$c.
(1)求角A;
(2)若B=$\frac{π}{6}$,且BC边上的中线AM的长为$\sqrt{7}$,求此时△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺3$\frac{1}{3}$寸,容纳米2000斛,(注:1丈=10尺,1尺=10寸,1斛=1.62立方尺,圆周率取3),则圆柱底圆周长约为(  )
A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺

查看答案和解析>>

同步练习册答案