精英家教网 > 高中数学 > 题目详情
16.若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a20=(  )
A.30B.29C.-30D.-29

分析 易知当n为奇数时,an+an+1=-(3n-2)+(3(n+1)-2)=3,从而解得.

解答 解:∵当n为奇数时,
an+an+1=-(3n-2)+(3(n+1)-2)=3,
∴a1+a2+…+a20
=(a1+a2)+(a3+a4)+…+(a19+a20
=3×10=30;
故选:A.

点评 本题考查了并项求和法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若等差数列{an}的前n项和为Sn,且7S5+5S7=70,则a2+a5=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,若函数f(x)=$|\begin{array}{l}{x-1}&{2}\\{-x}&{x+3}\end{array}|$在(-∞,m)上是单调减函数,则实数m的最大值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知空间任意一点O和不共线的三点A,B,C,若$\overrightarrow{CP}$=2$\overrightarrow{CA}$+$\overrightarrow{CB}$,则下列结论正确的是(  )
A.$\overrightarrow{OP}$=$\overrightarrow{OA}$+2$\overrightarrow{OB}$-2$\overrightarrow{OC}$B.$\overrightarrow{OP}$=-2$\overrightarrow{OA}$-$\overrightarrow{OB}$+3$\overrightarrow{OC}$C.$\overrightarrow{OP}$=2$\overrightarrow{OA}$+$\overrightarrow{OB}$-3$\overrightarrow{OC}$D.$\overrightarrow{OP}$=2$\overrightarrow{OA}$+$\overrightarrow{OB}$-2$\overrightarrow{OC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.实数x,y满足$\left\{{\begin{array}{l}{x≥1}\\{y≤a(a>1)}\\{x-y≤0}\end{array}}\right.$,若目标函数z=2x-y的最小值为-4,则实数a的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,点P(-$\sqrt{2}$,1)在该椭圆上.
(1)求椭圆C的方程;
(2)若点A,B是椭圆C上关于直线y=kx+1对称的两点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,若Γ与圆E:${({x-\frac{3}{2}})^2}+{y^2}$=1相交于M,N两点,且圆E在Γ内的弧长为$\frac{2}{3}$π.
(Ⅰ)求a,b的值;
(Ⅱ)过Γ的中心作两条直线AC,BD交Γ于A,C和B,D四点,设直线AC的斜率为k1,BD的斜率为k2,且k1k2=$\frac{1}{4}$
(1)求直线AB的斜率;
(2)求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若1≤x,y,z≤2,且xyz=4,则$lo{g}_{2}^{2}$x+$lo{g}_{2}^{2}$y+$lo{g}_{2}^{2}$z的取值范围是[$\frac{4}{3}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数y=log${\;}_{\frac{1}{3}}$sin(x+$\frac{π}{4}$)的单调递增区间.

查看答案和解析>>

同步练习册答案