17£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªF1£¨-$\sqrt{n}$£¬0£©£¬F2£¨$\sqrt{n}$£¬0£©£¬F3£¨0£¬$\sqrt{3}$£©£¬µãPΪÇúÏßCÉÏÈÎÒâÒ»µã£¬ÈôF1F3¡ÍF2F3£¬ÇÒ|PF1|Óë|PF2|ÊǹØÓÚxµÄ·½³Ìx2-4x+q=0µÄÁ½¸ù
£¨1£©ÇóÇúÏßCµÄ·½³Ì
£¨2£©ÒÑÖªQΪÇúÏßCµÄ×󶥵㣬²»ÓëxÖá´¹Ö±µÄÖ±ÏßlÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬ÇÒ¡ÏAQB=$\frac{¦Ð}{2}$
     ¢ÙÅжÏÖ±ÏßlÊÇ·ñ¹ýxÖáÉϵÄijһ¶¨µãN£¬²¢ËµÃ÷ÀíÓÉ
     ¢ÚÉèABµÄÖеãΪM£¬µ±Ö±ÏßOMÓëÖ±ÏßlµÄÇãб½Ç»¥²¹Ê±£¬ÇóÏß¶ÎABµÄ³¤£®

·ÖÎö £¨1£©ÀûÓÃΤ´ï¶¨Àí£¬F1F3¡ÍF2F3£¬È·¶¨|PF1|+|PF2|£¾|F1F2|£¬¿ÉµÃÇúÏßCΪÒÔF1£¬F2Ϊ½¹µãµÄÍÖÔ²£¬ÇÒa=2£¬c=$\sqrt{3}$£¬b=1£¬¼´¿ÉÇóÇúÏßCµÄ·½³Ì
£¨2£©¢ÙÉèÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏ$\overrightarrow{QA}$•$\overrightarrow{QB}$=0£¬¼´¿ÉµÃ³ö½áÂÛ£»
 ¢ÚÓɢٿɵÃl£ºy=k£¨x+1.2£©£¨k¡Ù0£©£¬´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃMµÄ×ø±ê£¬Çó³ö|QM|£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÒòΪ|PF1|Óë|PF2|ÊǹØÓÚxµÄ·½³Ìx2-4x+q=0µÄÁ½¸ù£¬
ËùÒÔ|PF1|+|PF2|=4£¬
ÒòΪF1£¨-$\sqrt{n}$£¬0£©£¬F2£¨$\sqrt{n}$£¬0£©£¬F3£¨0£¬$\sqrt{3}$£©£¬F1F3¡ÍF2F3£¬
ËùÒÔ-n+3=0£¬
ËùÒÔn=3£¬
ËùÒÔ|F1F2|=2$\sqrt{3}$£¬
ËùÒÔ|PF1|+|PF2|£¾|F1F2|£¬
ËùÒÔÇúÏßCΪÒÔF1£¬F2Ϊ½¹µãµÄÍÖÔ²£¬ÇÒa=2£¬c=$\sqrt{3}$£¬b=1£¬
ËùÒÔÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©¢ÙÉèÖ±Ïßl¹ýxÖáÉϵÄijһ¶¨µãN£¨m£¬0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬l£ºy=k£¨x-m£©£¬
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¨1+4k2£©x2-8mk2x+4k2m2-4=0£¬¡÷£¾0£¬»¯Îª1+4k2-k2m2£¾0
x1+x2=$\frac{8{k}^{2}m}{1+4{k}^{2}}$£¬x1x2=$\frac{4{k}^{2}{m}^{2}-4}{1+4{k}^{2}}$£¬
ÒòΪQ£¨-2£¬0£©£¬¡ÏAQB=$\frac{¦Ð}{2}$
ËùÒÔ$\overrightarrow{QA}$•$\overrightarrow{QB}$=0£¬
ËùÒÔ£¨x1+2£©£¨x2+2£©+y1y2=0£¬
ËùÒÔ´úÈëÕûÀí¿ÉµÃ5k2m2+16mk2+12k2=0£¬
ÒòΪ¡ÏAQB=$\frac{¦Ð}{2}$£¬
ËùÒÔk¡Ù0£¬
ËùÒÔ5m2+16m+12=0£¬
ËùÒÔm=-1.2£¨m=-2ÉáÈ¥£©£¬
ËùÒÔN£¨-1.2£¬0£©£»
¢ÚÓɢٿɵÃl£ºy=k£¨x+1.2£©£¨k¡Ù0£©£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¨25+100k2£©x2+240k2x+144k2-100=0£¬
M£¨-$\frac{24{k}^{2}}{5+20{k}^{2}}$£¬$\frac{6k}{5+20{k}^{2}}$£©£¬
ËùÒÔkOM=-$\frac{1}{4k}$£¬
ÒòΪֱÏßOMÓëÖ±ÏßlµÄÇãб½Ç»¥²¹£¬
ËùÒÔk-$\frac{1}{4k}$=0£¬
ËùÒÔk=$¡À\frac{1}{2}$£¬
ËùÒÔM£¨-$\frac{3}{5}$£¬¡À$\frac{3}{10}$£©£¬
ËùÒÔ|QM|=$\sqrt{£¨2-\frac{3}{5}£©^{2}+£¨¡À\frac{3}{10}£©^{2}}$=$\frac{\sqrt{205}}{10}$£¬
ËùÒÔ|AB|=2|OM|=$\frac{\sqrt{205}}{5}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨ÀíµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÀûÓÃÄæ¾ØÕó½â·½³Ì×é$\left\{\begin{array}{l}{2x+y=8}\\{4x-5y=2}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Çóʹº¯Êýy=cos2xÈ¡µÃ×î´óÖµxµÄ¼¯ºÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªµãP£¨x0£¬y0£©ÎªÍÖÔ²4x2+y2=1ÉÏÒ»¶¯µã£¬¹ýµãP×÷Ô²x2+y2=$\frac{1}{3}$µÄÇÐÏßl£¬¹ý×ø±êÔ­µãO×÷OPµÄ´¹Ïß½»Ö±ÏßlÓÚµãS£®
£¨1£©Çóx0µÄȡֵ·¶Î§£»
£¨2£©ÇóµãSµÄ¹ì¼£ËùÔÚµÄÇúÏß·½³Ì£»
£¨3£©Çó|PS|µÄ×îСֵ¼°´Ëʱ¡÷OPSµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=x2+bx+cÓëxÖá·Ö±ð½»ÓÚµãA£¨-4£¬0£©£¬B£¨2£¬0£©£¬ÓëyÖá½»ÓÚµãC£¬Æä¶Ô³ÆÖáÓëAC½»ÓÚµãM£¬µãDÔÚÕâÌõÅ×ÎïÏßÉÏ£¬ÇÒÔÚµÚÈýÏóÏÞ£®
£¨1£©ÇóÕâÌõÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý±í´ïʽ£»
£¨2£©ÇóDM¡ÎABʱµãDµÄ×ø±ê£»
£¨3£©Á¬½áAB¡¢DC£¬µÃµ½ËıßÐÎABCD£¬ÔòËıßÐÎABCDÃæ»ýµÄ×î´óֵΪ16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªµãA¡¢BµÄ×ø±ê·Ö±ðΪ£¨-2£¬0£©¡¢£¨2£¬0£©£¬Ö±ÏßAT¡¢BT½»ÓÚµãT£¬ÇÒËüÃǵÄбÂÊÖ®»ýΪ³£Êý-¦Ë£¨¦Ë£¾0£¬¦Ë¡Ù1£©£¬µãTµÄ¹ì¼£ÒÔ¼°A¡¢BÁ½µã¹¹³ÉÇúÏßC£®
£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£¬²¢ÇóÆä½¹µã×ø±ê£»
£¨¢ò£©Èô0£¼¦Ë£¼1£¬ÇÒÇúÏßCÉϵĵ㵽Æä½¹µãµÄ×îС¾àÀëΪ1£®ÉèÖ±Ïßl£ºx=my+1½»ÇúÏßCÓÚM¡¢N£¬Ö±ÏßAM¡¢BN½»ÓÚµãP£®
£¨¢¡£©µ±m=0ʱ£¬ÇóµãPµÄ×ø±ê£»
£¨¢¢£©µ±m±ä»¯Ê±£¬ÊÇ·ñ´æÔÚÖ±Ïßl1£¬Ê¹P×ÜÔÚÖ±Ïßl1ÉÏ£¿Èô´æÔÚ£¬Çó³öl1µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=lnx+a|x2-1|£¨a¡ÊR£©£®
£¨1£©µ±a=1ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©µ±a£¾0ʱ£¬Çóº¯Êýf£¨x£©ÔÚ£¨0£¬$\sqrt{e}$£©ÉϵÄ×î´óÖµg£¨a£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÒÑÖªËÄÀâ×¶P-ABCDµÄµ×ÃæÎªÁâÐΣ¬¡ÏBCD=120¡ãAB=PC=2£¬AP=BP=$\sqrt{2}$
£¨¢ñ£©ÇóÖ¤£ºAB¡ÍPC£»
£¨¢ò£©ÇóËÄÀâ×¶P-ABCDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÓÃÐÅÏ¢¼¼Êõ¹¤¾ß»­³öÖ±Ïßl£º2x-y+3=0£¬²¢ÔÚÆ½ÃæÉÏÈ¡Èô¸Éµã£¬¶ÈÁ¿ËüÃǵÄ×ø±ê£¬½«ÕâЩµãµÄ×ø±ê´úÈë2x-y+3£¬ÇóËüµÄÖµ£¬¹Û²ìÓÐʲô¹æÂÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸