精英家教网 > 高中数学 > 题目详情
16.公比为q的等比数列{an}中,a4•a6+a5•a3-a32=0,则q2的值是$\frac{\sqrt{5}-1}{2}$.

分析 运用等比数列的性质和通项公式,二次方程的解法即可得到结论.

解答 解:由a4•a6+a5•a3-a32=0,
可得a52+a42=a32
即为a12q8+a12q6=a12q4
即有q4+q2-1=0,
解得q2=$\frac{\sqrt{5}-1}{2}$(负值舍去),
故答案为:$\frac{\sqrt{5}-1}{2}$.

点评 本题考查等比数列的通项和性质的运用,考查运算求解能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.用描述法表示下列集合:
(1)偶数集;
(2)正奇数集;
(3){1,4,7,10,13};
(4){-2,-4,-6,-8,-10};
(5)方程组$\left\{\begin{array}{l}{x+y=0}\\{3x+2y=2}\end{array}\right.$的解;
(6)函数y=x2+2x的所有函数值;
(7)函数y=x2+2x图象上所有的点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|x2-(2a+1)x+a2+a-2≤0},B={x|x2-x-2<0},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.6个电子产品中有2个次品,4个合格品,每次从中任取一个测试,测试完后不放回,直到两个次品找到为止,那么测试次数的X的均值为$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示,直角△ABC,∠B=90°,AB=1,BC=2,直线l⊥BC,若将△ABC绕直线l旋转一周,得到的几何体的体积是$\frac{8}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.点P(x0,y0)为椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1外一点,l:$\frac{{x}_{0}x}{4}$+$\frac{{y}_{0}y}{3}$=1,则l与C的关系是(  )
A.相交B.相切C.相离D.相交或相切

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求${C}_{6}^{2}$+9${C}_{6}^{3}$+92${C}_{6}^{4}$+93${C}_{6}^{5}$+94${C}_{6}^{6}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知在锐角△ABC中,已知∠B=$\frac{π}{3}$,|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=2,则$\overrightarrow{AB}•\overrightarrow{AC}$的取值范围是(0,12).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC内,sinA+sinC=2sinB,sinA=2sinC
(1)求cosA的值;
(2)若S△ABC=$\frac{3\sqrt{15}}{4}$,求b.

查看答案和解析>>

同步练习册答案