精英家教网 > 高中数学 > 题目详情
14.如图,有一矩形相框,放置照片区域的上、下方要各留3cm空白,左、右两侧要各留2cm的空白.
(1)若相框周长为80cm,要使其面积不小于300cm2,求相框一边的范围;
(2)若相框的面积为400cm2,求框内可放照片的最大面积.

分析 (1)设相框高为xcm,宽为ycm,由题意可得x+y=40,xy≥300,解不等式即可得到所求范围;
(2)由题意可得xy=400,则框内照片面积S=(x-6)(y-4)=xy-6y-4x+24,即S=424-6y-4x,运用基本不等式即可得到最大值.

解答 解:(1)设相框高为xcm,宽为ycm,
由题意可得x+y=40,xy≥300,
即有x2-40x+300≤0,
解得10≤x≤30,
则相框一边的范围为[10,30];
(2)由题意可得xy=400,
则框内照片面积S=(x-6)(y-4)=xy-6y-4x+24,
即S=424-6y-4x,
∵x>0,y>0,xy=400,
∴6y+4x≥2$\sqrt{24xy}$=80$\sqrt{6}$,
当且仅当6y=4x,即x=10$\sqrt{6}$,y=$\frac{20\sqrt{6}}{3}$时等号成立.
则S≤424-80$\sqrt{6}$.
即有照片面积最大为424-80$\sqrt{6}$cm2

点评 本题考查函数的模型与应用,基本不等式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在梯形PBCD中,A是PB的中点,DC∥PB,DC⊥CB,且PB=2BC=2DC=4(如图1所示),将三角形PAD沿AD翻折,使PB=2(如图2所示),E是线段PD上的一点,且PE=2DE.
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)在线段AB上是否存在一点F,使AE∥平面PCF?若存在,请指出点F的位置并证明,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.1B.21+$\sqrt{3}$C.3$\sqrt{3}$+12D.$\frac{3\sqrt{3}}{2}$+12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=4.
(1)求证:CE∥平面PAB;
(2)若F为PC的中点,求AF与平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若2x-y+1≥0,2x+y≥0,且x≤1,则z=x+3y的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过点(2,3)和点(6,5)的直线的斜率为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个三棱锥的三视图如图所示,则其体积是$\frac{4}{3}$;此三棱锥的最长棱的长度为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,那么$\overrightarrow{b}$•(2$\overrightarrow{a}$-$\overrightarrow{b}$)的值为(  )
A.-8B.-6C.0D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C的焦点M,其准线与x轴的交点为K,过点K(-1,0)的直线l与C交于A,B两点,点A关于x轴的对称点为D.
(Ⅰ)证明:点F在直线BD上;
(Ⅱ)设$\overrightarrow{FA}$•$\overrightarrow{FB}$=$\frac{8}{9}$,求△BDK内切圆M的方程.

查看答案和解析>>

同步练习册答案