精英家教网 > 高中数学 > 题目详情
4.在梯形PBCD中,A是PB的中点,DC∥PB,DC⊥CB,且PB=2BC=2DC=4(如图1所示),将三角形PAD沿AD翻折,使PB=2(如图2所示),E是线段PD上的一点,且PE=2DE.
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)在线段AB上是否存在一点F,使AE∥平面PCF?若存在,请指出点F的位置并证明,若不存在请说明理由.

分析 (1)翻折后,△PAB是等边三角形,棱锥的高为△PAB的高,棱锥的底面ABCD是正方形,代入体积公式计算即可;
(2)过E作EG∥CD,EG交PC于G,连结GF,由线面平行的性质可得四边形AEGF是平行四边形,故而AF=EG=$\frac{2}{3}CD$,即AF=$\frac{2}{3}AB$.

解答 解:(Ⅰ)如图所示,过点P作PO⊥AB于点O
∵在梯形PBCD有AD⊥PA,AD⊥AB
∴翻折后仍有AD⊥PA,AD⊥AB又∵PA∩AB=A
∴AD⊥平面PAB,∵PO?平面PAB,
∴AD⊥PO,又∵PO⊥AB,AD∩AB=A,AD?平面ABCD,AB?平面ABCD,
∴PO⊥平面ABCD,
∵PA=AB=PB=2,∴△PAB是等边三角形,∴$PO=\sqrt{3}$,
∴${V_{P-ABCD}}=\frac{1}{3}{S_{ABCD}}•PO=\frac{1}{3}×2×2×\sqrt{3}=\frac{{4\sqrt{3}}}{3}$,
(Ⅱ)存在点F,使AE∥平面PCF,此时$AF=\frac{2}{3}AB$,理由如下:
过E作EG∥CD,EG交PC于G,设F是线段AB上的一点,且$AF=\frac{2}{3}AB$,连接FG,PF,CF,
∵PE=2DE,EG∥CD,
∴EG=$\frac{2}{3}CD$,EG∥CD,
又∵AF=$\frac{2}{3}CD$,AF∥CD,
∴EG=AF,EG∥AF,∴四边形AEGF是平行四边形,
∴AE∥GF,又∵AE?平面PCF,GF?平面PCF,
∴AE∥平面PCF.

点评 本题考查了线面垂直的判定,棱锥的体积计算,线面平行的判定与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD是菱形,PD⊥平面ABCD,PD∥BE,AD=PD=2BE=2,∠DAB=60°,点F为PA的中点.
(Ⅰ)求证:EF∥平面ABCD;
(Ⅱ)求证:平面PAE⊥平面PAD;
(Ⅲ)求三棱锥P-ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,F1,F2分别是椭圆的左右焦点,点B(0,-b)是椭圆C的下顶点,BF1的延长线交椭圆C于点A,点D和点A关于x轴对称.
(1)若BF1=2,点D(-$\frac{8\sqrt{3}}{7}$,-$\frac{1}{7}$),求椭圆的标准方程;
(2)若$\overrightarrow{D{F}_{2}}$•$\overrightarrow{BA}$=0,求椭圆C的离心率e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(Ⅰ)求证:DM⊥平面BPC
(Ⅱ)求证:平面ABC⊥平面APC.
(Ⅲ)若BC=4,AB=20,求三棱锥D-BCM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C$:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,点$(\sqrt{3},\frac{1}{2})$在椭圆C上.直线l过点(1,1),且与椭圆C交于A,B两点,线段AB的中点为M.
(I)求椭圆C的方程;
(Ⅱ)点O为坐标原点,延长线段OM与椭圆C交于点P,四边形OAPB能否为平行四边形?若能,求出此时直线l的方程,若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,正方形ABCD的边长为$2\sqrt{2}$,E、F分别是DC和BC的中点,H是正方形的对角线AC与EF的交点,N是正方形两对角线的交点,现沿EF将△CEF折起到△PEF的位置,使得PH⊥AH,连结PA,PB,PD(如图2).
(Ⅰ)求证:BD⊥AP;
(Ⅱ)求三棱锥A-BDP的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某三棱锥的三视图如图所示,该三棱锥的表面积是(  )
A.56+12$\sqrt{5}$B.60+12$\sqrt{5}$C.30+6$\sqrt{5}$D.28+6$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线$y=x+\frac{1}{2}$与曲线x2-y|y|=1的交点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,有一矩形相框,放置照片区域的上、下方要各留3cm空白,左、右两侧要各留2cm的空白.
(1)若相框周长为80cm,要使其面积不小于300cm2,求相框一边的范围;
(2)若相框的面积为400cm2,求框内可放照片的最大面积.

查看答案和解析>>

同步练习册答案