精英家教网 > 高中数学 > 题目详情
14.设数列{an}的前n项和Sn满足:Sn=nan-2n(n-1),等比数列{bn}的前n顶和为Tn,公比为a1,且T5=T3+2b3
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为Mn

分析 (1)根据题意和等比数列的通项公式列出关于a1的方程,解次方程求出a1,当n≥2时,an=sn-sn-1 化简Sn=nan-2n(n-1),由等差数列的定义得数列{an}是等差数列,由等差数列的通项公式求出an
(2)由(1)中求出的an分别代入$\frac{1}{{a}_{n}{a}_{n+1}}$化简,利用裂项相消法求出数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Mn

解答 解:(1)∵等比数列{bn}的前n顶和为Tn,公比为a1,且T5=T3+2b3
∴T5-T3=2b3,则b4+b5=2b3,即${{a}_{1}}^{2}+{a}_{1}-2=0$,
解得 a1=1或a1=-2,
∵数列{an}的前n项和Sn满足:Sn=nan-2n(n-1),
∴当n≥2时,an=sn-sn-1=nan-2n(n-1)-[(n-1)an-1-2(n-1)(n-2)],
化简可得,an-an-1=4 (n≥2).
∴数列{an}是以1为或-2首项,以4为公差的等差数列,
则an=4n-3或an=4n-6;
(2)当an=4n-3时,$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(4n-3)(4n+1)}$=$\frac{1}{4}$($\frac{1}{4n-3}-\frac{1}{4n+1}$),
∴Mn=$\frac{1}{4}$[(1-$\frac{1}{5}$)+($\frac{1}{5}-\frac{1}{9}$)+…+($\frac{1}{4n-3}-\frac{1}{4n+1}$)].
=$\frac{1}{4}$($1-\frac{1}{4n+1}$)=$\frac{1}{4n+1}$;
当an=4n-6时,$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(4n-6)(4n-2)}$=$\frac{1}{4}$($\frac{1}{4n-6}-\frac{1}{4n-2}$),
∴Mn=$\frac{1}{4}$[(-$\frac{1}{2}$-$\frac{1}{2}$)+($\frac{1}{2}-\frac{1}{6}$)+…+($\frac{1}{4n-6}-\frac{1}{4n-2}$)].
=$\frac{1}{4}$($-\frac{1}{2}$-$-\frac{1}{4n-2}$)=$-\frac{n}{4(2n-1)}$,
综上可得,当an=4n-3时,Mn=$\frac{1}{4n+1}$;
当an=4n-6时,Mn=$-\frac{n}{4(2n-1)}$.

点评 本题考查等差数列的定义、通项公式,等比数列的通项公式,以及当n≥2时an=Sn -Sn-1的应用,考查裂项相消法求数列的和,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知A={x||x-2|<1},B={x|$\frac{5}{x-1}$≥1},C={x|(2a-1)x<a,x>0},若“x∈A∩B”是“x∈C”的充分不必要条件,则正实数a的取值范围是(0,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点M在曲线y=ln(x-1)上,点N在曲线y=$\frac{x-2}{x-1}$(x>1)上,点P在直线y=x上,则|PM|+|PN|的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设全集为U=R,集合A={x|(x+3)(4-x)≤0},B={x|log2(x+2)<3}.
(1)求A∩∁UB;
(2)已知C={x|2a<x<a+1},若C⊆A∪B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图是我国南宋时期的数学家秦九韶提出的一种多项式f(x)=anxn+an-1xn-1+…+a1x+a0的求值问题的算法.现按照这个程序执行函数f (x)=3x4-2x3-6x-17的计算,若输入的值x0=2,则输出的v的值是(  )
A.0B.2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校在2015年对2000名高一新生进行英语特长测试选拔,现抽取部分学生的英语成绩,将所得数据整理后得出频率分布直方图如图所示,图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.
(1)求第二小组的频率及抽取的学生人数;
(2)学校打算从分数在[130,140)和[140,150]分内的学生中,按分层抽样抽取4人进行改进意见问卷调查,若调查老师随机从这四人的问卷中(每人一份)随机抽取两份调阅,求这两份问卷都来自英语测试成绩在[130,140)分的学生概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设数列{an}的前n项和为Sn,且a1=1,{Sn-(n+1)2an}为常数列,则an=$\frac{6}{(n+1)(n+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.2个人分别从3部电影中选择一部电影购买电影票,不同的购买方式共有(  )
A.6B.9C.8D.27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知焦点在x轴上的椭圆的离心率是$\frac{{\sqrt{2}}}{2}$,且过点S(-1,$\frac{{\sqrt{2}}}{2}$)
(1)求该椭圆方程
(2)若倾斜角是45°的直线l和椭圆交于P、Q两点,M是直线l与x轴的交点,且有3$\overrightarrow{PM}=\overrightarrow{MQ}$,求直线l方程.

查看答案和解析>>

同步练习册答案