精英家教网 > 高中数学 > 题目详情
4.已知A={x||x-2|<1},B={x|$\frac{5}{x-1}$≥1},C={x|(2a-1)x<a,x>0},若“x∈A∩B”是“x∈C”的充分不必要条件,则正实数a的取值范围是(0,$\frac{3}{2}$].

分析 分别求出集合A、B,求出A∩B,通过讨论a的范围,求出集合C,根据充分必要条件结合集合的包含关系,求出a的范围即可.

解答 解:∵A={x||x-2|<1}={x|1<x<3},
B={x|$\frac{5}{x-1}$≥1}={x|1<x≤6},
∴A∩B=(1,3),
∵(2a-1)x<a,x>0,a>0,
∴2a-1>0即a>$\frac{1}{2}$时,不等式的解集是:{x|0<x<$\frac{a}{2a-1}$},
2a-1<0时,即0<a<$\frac{1}{2}$时,不等式的解集是{x|x>0},
C={x|(2a-1)x<a,x>0}={x|0<x<$\frac{a}{a-1}$}或{x|x>0},
若“x∈A∩B”是“x∈C”的充分不必要条件,
即(1,3)⊆(0,$\frac{a}{a-1}$),或(1,3)⊆(0,+∞),
故$\frac{a}{a-1}$≥3,解得:0<a≤$\frac{3}{2}$,
故答案为:(0,$\frac{3}{2}$].

点评 本题考查了充分必要条件,考查集合的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知关于x的不等式ax2-(a+2)x+2<0.
(1)当a=-1时,解不等式;
(2)当a∈R时,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设σ是坐标平面按顺时针方向绕原点做角度为$\frac{2π}{7}$的旋转,τ表示坐标平面关于y轴的镜面反射.用τσ表示变换的复合,先做τ,再做σ.用σk表示连续k次σ的变换,则στσ2τσ3τσ4是(  )
A.σ4B.σ5C.σ2τD.τσ2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{{\sqrt{3}}}{2}$,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(-2,0),点P(0,y0)满足|PA|=|PB|,且$\overrightarrow{PA}$•$\overrightarrow{PB}$=4,求y0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}(n∈N*),满足a1=1,2an+1=$\frac{1}{2}$an+$\sqrt{\frac{1}{3}+{a_n}}$.
(Ⅰ) 求证:$\frac{2}{3}$<an+1<an
(Ⅱ) 设数列{an}(n∈N*)的前n项和为Sn,证明:Sn<$\frac{2n}{3}$+$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数a,b∈{1,2},则在不等式x+y-3≥0表示的平面区域内的点P(a,b)共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x+$\frac{a}{x}$+b(x≠0),其中a,b∈R.
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式;
(Ⅱ)讨论函数f(x)的单调性 并求出f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数h(x)=2sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{4}$个单位,再向上平移2个单位,得到函数f(x)的图象,则函数f(x)的图象(  )
A.关于直线x=0对称B.关于直线x=π对称C.关于点($\frac{π}{8}$,0)对称D.关于点($\frac{π}{8}$,2)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和Sn满足:Sn=nan-2n(n-1),等比数列{bn}的前n顶和为Tn,公比为a1,且T5=T3+2b3
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为Mn

查看答案和解析>>

同步练习册答案