分析 (1)由离心率求得a和c的关系,进而根据c2=a2-b2求得a和b的关系,进而根据菱形的面积公式,求得a和b,则椭圆的方程可得.
(2)由(1)可求得A点的坐标,设出点B的坐标和直线l的斜率,表示出直线l的方程与椭圆方程联立,消去y,由韦达定理求得点B的横坐标的表达式,进而利用直线方程求得其纵坐标表达式,表示出|AB|进而求得k,则直线的斜率可得.设线段AB的中点为M,当k=0时点B的坐标是(2,0),线段AB的垂直平分线为y轴,进而根据$\overrightarrow{PA}$•$\overrightarrow{PB}$=4,求得y0;当k≠0时,可表示出线段AB的垂直平分线方程,令x=0得到y0的表达式根据$\overrightarrow{PA}$•$\overrightarrow{PB}$=4,求得y0;综合答案可得.
解答 解:(1)由e=$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$,得3a2=4c2.
再由c2=a2-b2,解得a=2b.
由题意可知 $\frac{1}{2}$×2a×2b=4,即ab=2.
解得a=2,b=1.
所以椭圆的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(2)由(Ⅰ)可知点A的坐标是(-2,0).
设点B的坐标为(x1,y1),直线l的斜率为k.
则直线l的方程为y=k(x+2).
将直线方程代入椭圆方程整理得:(1+4k2)x2+16k2x+(16k2-4)=0.
-2x1=$\frac{16{k}^{2}-4}{1+4{k}^{2}}$,x1=$\frac{2-8{k}^{2}}{1+4{k}^{2}}$,y1=$\frac{4k}{1+4{k}^{2}}$,
所以 丨AB丨=$\sqrt{(-2-\frac{2-8{k}^{2}}{1+4{k}^{2}})^{2}+(\frac{4k}{1+4{k}^{2}})^{2}}$=$\frac{\sqrt{1+{k}^{2}}}{1+4{k}^{2}}$,
设线段AB的中点为M,则M的坐标为(-$\frac{8{k}^{2}}{1+4{k}^{2}}$,$\frac{2k}{1+4{k}^{2}}$),
以下分两种情况:
①当k=0时,点B的坐标是(2,0),
线段AB的垂直平分线为y轴,
于是$\overrightarrow{PA}$=(-2,-y0),$\overrightarrow{PB}$=(2,-y0),
$\overrightarrow{PA}$•$\overrightarrow{PB}$=4,y0=2$\sqrt{2}$,
②当k≠0时,线段AB的垂直平分线方程为y-$\frac{2k}{1+4{k}^{2}}$=-$\frac{1}{k}$(x+$\frac{8{k}^{2}}{1+4{k}^{2}}$),
令x=0,解得y0=-$\frac{6k}{1+4{k}^{2}}$,
于是$\overrightarrow{PA}$=(-2,-y0),$\overrightarrow{PB}$=(x1,y1-y0),
$\overrightarrow{PA}$•$\overrightarrow{PB}$=-2x1-y0(y1-y0)=-2×$\frac{2-8{k}^{2}}{1+4{k}^{2}}$+$\frac{6k}{1+4{k}^{2}}$($\frac{4k}{1+4{k}^{2}}$+$\frac{6k}{1+4{k}^{2}}$),
=$\frac{4(16{k}^{2}+15k-1)}{(1+4{k}^{2})^{2}}$=4,
整理得7k2=2.故k=±$\frac{\sqrt{14}}{7}$,
∴y0=±$\frac{2\sqrt{14}}{5}$,
综上可知y0=2$\sqrt{2}$,或y0=±$\frac{2\sqrt{14}}{5}$.
点评 本题主要考查椭圆的标准方程和几何性质、直线的方程、两点间的距离公式、直线的倾斜角、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查综合分析与运算能力.综合性强,难度大,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{16}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{4}$ | D. | $1-\frac{π}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | $\frac{1+\sqrt{3}}{2}$ | D. | $\frac{1-\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com