精英家教网 > 高中数学 > 题目详情
13.将函数h(x)=2sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{4}$个单位,再向上平移2个单位,得到函数f(x)的图象,则函数f(x)的图象(  )
A.关于直线x=0对称B.关于直线x=π对称C.关于点($\frac{π}{8}$,0)对称D.关于点($\frac{π}{8}$,2)对称

分析 利用函数y=Asin(ωx+φ)的图象变换规律求得f(x)的解析式,再利用正弦函数的图象的对称性,得出结论.

解答 解:将函数h(x)=2sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{4}$个单位,
可得y=2sin[2(x-$\frac{π}{4}$)+$\frac{π}{4}$]=2sin(2x-$\frac{π}{4}$)的图象;
再向上平移2个单位,得到函数f(x)=2sin(2x-$\frac{π}{4}$)+2的图象,
∵$f(\frac{π}{8})=2sin(2×\frac{π}{8}-\frac{π}{4})+2=2$,
∴f(x)的图象关于点$(\frac{π}{8},2)$对称,
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.直线x+3y-7=0与圆x2+y2+2x-2y-3=0的交点A,B,则过A,B两点且过原点的圆的方程x2+y2+$\frac{11}{7}$x-$\frac{23}{7}$y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知A={x||x-2|<1},B={x|$\frac{5}{x-1}$≥1},C={x|(2a-1)x<a,x>0},若“x∈A∩B”是“x∈C”的充分不必要条件,则正实数a的取值范围是(0,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序框图,则输出S的结果是(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.$\frac{1+\sqrt{3}}{2}$D.$\frac{1-\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知|${\overrightarrow a}$|=$\sqrt{5}$,$\overrightarrow b$=(1,2),且$\overrightarrow a$⊥$\overrightarrow b$,则$\overrightarrow a$的坐标为(  )
A.(-2,-1)或(2,1)B.(-6,3)C.(1,2)D.(2,-1)或(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.6粒种子分种在甲、乙、丙3个坑内,每坑2粒,每粒种子发芽的概率为0.5,如果一个坑内至少有1粒种子发芽,那么这个坑不需要补种,则3个坑中恰有1个坑不需要补种的概率为$\frac{9}{64}$(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点M在曲线y=ln(x-1)上,点N在曲线y=$\frac{x-2}{x-1}$(x>1)上,点P在直线y=x上,则|PM|+|PN|的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设全集为U=R,集合A={x|(x+3)(4-x)≤0},B={x|log2(x+2)<3}.
(1)求A∩∁UB;
(2)已知C={x|2a<x<a+1},若C⊆A∪B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.2个人分别从3部电影中选择一部电影购买电影票,不同的购买方式共有(  )
A.6B.9C.8D.27

查看答案和解析>>

同步练习册答案