| A. | 关于直线x=0对称 | B. | 关于直线x=π对称 | C. | 关于点($\frac{π}{8}$,0)对称 | D. | 关于点($\frac{π}{8}$,2)对称 |
分析 利用函数y=Asin(ωx+φ)的图象变换规律求得f(x)的解析式,再利用正弦函数的图象的对称性,得出结论.
解答 解:将函数h(x)=2sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{4}$个单位,
可得y=2sin[2(x-$\frac{π}{4}$)+$\frac{π}{4}$]=2sin(2x-$\frac{π}{4}$)的图象;
再向上平移2个单位,得到函数f(x)=2sin(2x-$\frac{π}{4}$)+2的图象,
∵$f(\frac{π}{8})=2sin(2×\frac{π}{8}-\frac{π}{4})+2=2$,
∴f(x)的图象关于点$(\frac{π}{8},2)$对称,
故选:D.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | $\frac{1+\sqrt{3}}{2}$ | D. | $\frac{1-\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,-1)或(2,1) | B. | (-6,3) | C. | (1,2) | D. | (2,-1)或(-2,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com