精英家教网 > 高中数学 > 题目详情
5.在锐角△ABC中,A=2B,则$\frac{a}{b}$的取值范围是(  )
A.$(0,\sqrt{2})$B.$(\sqrt{2},\sqrt{3})$C.$(\sqrt{3},2)$D.$(\sqrt{2},2)$

分析 利用正弦定理列出关系式,将A=2B代入,利用二倍角的正弦函数公式化简,约分得到结果为2cosB,根据三角形的内角和定理及三角形ABC为锐角三角形,求出B的范围,进而确定出cosB的范围,即可得出所求式子的范围.

解答 解:∵A=2B,
∴根据正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$得:$\frac{a}{b}$=$\frac{sinA}{sinB}$=$\frac{sin2B}{sinB}$=$\frac{2sinBcosB}{sinB}$=2cosB,
∵A+B+C=180°,
∴3B+C=180°,即C=180°-3B,
∵C为锐角,
∴30°<B<60°,
又0<A=2B<90°,
∴30°<B<45°,
∴$\frac{\sqrt{2}}{2}$<cosB<$\frac{\sqrt{3}}{2}$,即$\sqrt{2}$<2cosB<$\sqrt{3}$,
则$\frac{a}{b}$的取值范围是($\sqrt{2}$,$\sqrt{3}$).
故选:B.

点评 此题考查了正弦定理,余弦函数的图象与性质,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知f(x)=(a-1)(ax-a-x)(a>0.a≠1).
(1)判断并证明f(x)的奇偶性;
(2)判断并证明f(x)的单调性;
(3)若f(acos2x-a2)+f(6acosx-1)≤0对任意x∈[$\frac{π}{3}$,$\frac{π}{2}$]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集I={-1,-2,-3,0,1},M={-1,0,a2+1},则∁IM为(  )
A.{-1,-2,-3,1}B.{-1,0,1}C.{-1,-3}D.{-2,-3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过点M(1,2),N(m,3)的直线与2x-3y+1=0垂直,则m的值为(  )
A.1B.$-\frac{1}{3}$C.$\frac{1}{3}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC内,a,b,c分别为角A,B,C所对的边,a,b,c成等差数列,且 a=2c,S△ABC=$\frac{3\sqrt{15}}{4}$,则b的值为(  )
A.1B.2C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有以下判断:
(1)f(x)=$\frac{|x|}{x}$与g(x)=$\left\{{\begin{array}{l}{1(x≥0)}\\{-1(x<0)}\end{array}}$表示同一个函数;
(2)f(x)=x2-2x+1与g(t)=t2-2t+1是同一函数;
(3)若f(x)=|x-1|-|x|,则f[f($\frac{1}{2}$)]=0.
其中正确判断的序号是(2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x,y∈R+,且$\frac{1}{x}+\frac{9}{y}$=2,则x+y的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{a{x}^{2}+1}{x+c}$(a>0,c∈R)为奇函数,当x>0时,f(x)的最小值为2.
(1)求函数的解析式
(2)若g(x)=f(x)-x,n∈N*且n≥2,求证:$\frac{n-1}{2n}$≤g(22)+g(32)+g(42)+…+g(n2)<$\frac{n-1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}中,已知a1+a2+a3=-24,a18+a19+a20=78,则S20等于(  )
A.160B.180C.200D.220

查看答案和解析>>

同步练习册答案