精英家教网 > 高中数学 > 题目详情
19.若对任意正实数a,不等式x≤4+a恒成立,则实数x的最大值为4.

分析 看成关于a的不等式:x≤4+a,只需求出右式的最小值即可,显然最小值大于4,可得答案.

解答 解:看成关于a的不等式:x≤4+a,
a+4的最小值大于4,
∴x≤4,
故答案为4.

点评 考查了恒成立问题的转换.属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\frac{{x}^{2}}{2}$-klnx,k∈R.
(1)求f(x)的单调性;
(2)判断方程f(x)=0在区间(1,$\sqrt{e}$)上是否有解?若有解,说明解的个数及依据;若无解,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知圆C:(x-a)2+y2=1(a>0),过直线l:2x+2y+3=0上任意一点P作圆C的两条切线PA,PB,切点分别为A,B,若∠APB为锐角,则a的取值范围为($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足:a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),数列{bn}满足bn+1=(n-2λ)•($\frac{1}{{a}_{n}}$+1)(n∈N*),b1=-λ.
(1)求数列{an}的通项公式;
(2)若数列{bn}是单调递增数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}的各项均为正整数,对于n∈N*有an+1=$\left\{\begin{array}{l}{3{a}_{n}+5,{a}_{n}为奇数}\\{\frac{{a}_{n}}{{2}^{k}},{a}_{n}为偶数}\end{array}\right.$其中k为使an+1为奇数的正整数).a1=11时,a65=31.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合A={x∈N|5+4x-x2>0},B={y|y=4-x,x∈A},则A∪B等于(  )
A.BB.{1,2,4}C.{1,2,3,4}D.{-1,0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解强度D(单位:分贝)与声音能量I(单位:W/cm2)之间的关系,将测量得到的声音强度Di和声音能量Ii(i=1,2…,10)数据作了初步处理,得到如表的散点图及一些统计量的值.
 $\overline{I}$ $\overline{D}$ $\overline{W}$ $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})^{2}$ $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})^{2}$ $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})({D}_{i}-\overline{D})$ $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})({D}_{i}-\overline{D})$
1.04×10-1145.7-11.5 1.56×10-21 0.51 6.88×10-11 5.1
表中Wi=lgIi,$\overline{W}$=$\frac{1}{10}\underset{\stackrel{10}{∑}}{i=1}{W}_{i}$.
(Ⅰ)根据表中数据,求声音强度D关于声音能量I的回归方程D=a+blgI;
(Ⅱ)当声音强度大于60分贝时属于噪音,会产生噪声污染,城市中某点P共受到两个声源的影响,这两个声源的声音能量分别是I1和I2,且$\frac{1}{{I}_{1}}$+$\frac{4}{{I}_{2}}$=1010,已知点P的声音能量等于声音能量I1与I2之和,请根据(Ⅰ)中的回归方程,判断P点是否受到噪声污染的干扰,并说明理由.
附:对于一组数据(μ1,v1),(μ2,v2),…,(μn,vn),其回归直线v=α+βμ的斜率和截距的最小二乘估计分别为:$\widehat{β}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}({μ}_{i}-\overline{μ})({v}_{i}-\overline{v})}{\underset{\stackrel{n}{∑}}{i=1}({μ}_{i}-\overline{μ})^{2}}$,$\widehat{α}$=$\overline{v}-\widehat{β}\overline{μ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=$\frac{1}{y-2x}$的最大值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=2x+x|x-a|.
(1)当a=1时,解不等式f(x)≥2;
(2)当x∈[1,2]时,不等式f(x)≤1+2x2恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案