分析 (1)根据条件列方程解出a1和d,从而得出通项公式;
(2)利用等比数列的求和公式得出Tn.
解答 解:(1)设{an}的公差为d,
则$\left\{\begin{array}{l}{{a}_{1}+2d=2}\\{7{a}_{1}+21d=21}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=0}\\{d=1}\end{array}\right.$.
∴an=a1+(n-1)d=n-1.
(2)由(1)可得bn=2n-1,∴{bn}为以1为首项,以2为公比的等比数列,
∴Tn=$\frac{1-{2}^{n}}{1-2}$=2n-1.
点评 本题考查了等差数列,等比数列的通项公式与求和公式,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5,(-2,+∞) | B. | -5,(-2,+∞) | C. | 5,(-∞,2) | D. | 5,(-∞,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | 8 | C. | 24 | D. | $\frac{25}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com