精英家教网 > 高中数学 > 题目详情
1.函数f(x)=-x2-4x+1的最大值和单调增区间分别为(  )
A.5,(-2,+∞)B.-5,(-2,+∞)C.5,(-∞,2)D.5,(-∞,-2)

分析 根据函数的解析式分析出函数的图象,进而根据二次函数图象和性质,可求出函数的最大值和单调增区间.

解答 解:∵f(x)=-x2-4x+1=-(x+2)2+5
∴函数f(x)=-x2-4x+1的图象是开口朝下且以直线x=-2为对称轴的抛物线
故函数f(x)=-x2-4x+1的最大值是5,单调增区间是(-∞,2)
故选:D.

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,2),且$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则实数λ等于(  )
A.-1B.$\frac{1}{2}$C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在如图所示的三棱锥S-ABC中,SA=AB=SB=$\sqrt{2}$,BC=AC=1,SC=$\sqrt{3}$,则三棱锥S-ABC的外接球的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知三棱柱ABC一A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为2$\sqrt{6}$,AB=2,AC=1,∠BAC=60°,则此球的体积等于(  )
A.36πB.72πC.144πD.288π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.四棱锥P-ABCD的底面ABCD是矩形,侧面PAD⊥平面ABCD,∠APD=120°,AB=PA=PD=2,则该四棱锥P-ABCD的外接球的体积为$\frac{20\sqrt{5}}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)若关于x的不等式-$\frac{1}{2}{x^2}$+2x>mx的解集为(0,2),求m的值.
(2)在△ABC中,sinA=$\frac{5}{13}$,cosB=$\frac{3}{5}$,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+ax+2.
(Ⅰ)求实数a的值,使函数y=f(x)在区间[-5,5]上为偶函数;
(Ⅱ)求实数a的取值范围,使函数y=f(x)在区间[-5,5]上是单调函数;
(Ⅲ)求f(x)在区间[-5,5]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设等差数列{an}的前n项和为Sn,且a3=2,S7=21.
(1)求数列{an}的通项公式;
(2)设bn=2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}为等差数列,公差d≠0,其中${a_{k_1}}$,${a_{k_2}}$,…,${a_{k_n}}$恰为等比数列,若k1=1,k2=5,k3=17,求k1+k2+…+kn

查看答案和解析>>

同步练习册答案