精英家教网 > 高中数学 > 题目详情
13.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,2),且$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则实数λ等于(  )
A.-1B.$\frac{1}{2}$C.-$\frac{1}{2}$D.1

分析 利用向量垂直,数量积为0,得到关于λ的方程解之.

解答 解:因为向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,2),所以$\overrightarrow{a}$+λ$\overrightarrow{b}$=(1+2λ,2λ),且$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{a}$垂直,
所以($\overrightarrow{a}$+λ$\overrightarrow{b}$)•$\overrightarrow{a}$=0即1+2λ=0,解得$λ=-\frac{1}{2}$;
故选:C.

点评 本题考查了平面向量的坐标运算以及向量垂直的性质运用;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.用反证法证明命题时,对结论“自然数a,b,c中至多有一个奇数”的反设是(  )
A.自然数a,b,c中至少有两个奇数
B.自然数a,b,c中至少有两个偶数或都是奇数
C.自然数a,b,c都是偶数
D.自然数a,b,c都是奇数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数(1-i)z=2+3i(i为虚数单位),则z的虚部为(  )
A.$\frac{5}{2}$B.$\frac{5}{2}$iC.-$\frac{5}{2}$iD.-$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=Asin(?x+φ)(A>0,?>0,|φ|<$\frac{π}{2}$)满足f(-1)=0,则(  )
A.f(x-1)一定是偶函数B.f(x-1)一定是奇函数
C.f(x+1)一定是偶函数D.f(x+1)一定是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列能保证a⊥∂(a,b,c为直线,∂为平面)的条件是(  )
A.b,c?∂.a⊥b,a⊥cB.b,c?∂.a∥b,a∥c
C.b,c?∂.b∩c=A,a⊥b,a⊥cD.b,c?∂.b∥c,a⊥b,a⊥c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知离心率为$\frac{1}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,A是椭圆C的左顶点,且满足|AF1|+|AF2|=4.
(1)求椭圆C的标准方程;
(2)若斜率为k的直线交椭圆C于点M,N两点(异于A点),且满足AM⊥AN,问直线MN是否恒过定点?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=ax2+bx+c(a<0),若f(x-2)是偶函数,能否比较f(-$\frac{\sqrt{3}}{2}$),f(-$\frac{π}{3}$),f(-1)的大小?若能,将这三个数按从小到大的顺序排列;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合A={x||x-1|≤1},B={x|y=$\sqrt{1-3x}$},则A∩B=[0,$\frac{1}{3}$],(∁RA)∪B=(-∞,$\frac{1}{3}$]∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=-x2-4x+1的最大值和单调增区间分别为(  )
A.5,(-2,+∞)B.-5,(-2,+∞)C.5,(-∞,2)D.5,(-∞,-2)

查看答案和解析>>

同步练习册答案