精英家教网 > 高中数学 > 题目详情
11.已知数列{an}为等差数列,公差d≠0,其中${a_{k_1}}$,${a_{k_2}}$,…,${a_{k_n}}$恰为等比数列,若k1=1,k2=5,k3=17,求k1+k2+…+kn

分析 利用等差数列、等比数列的定义和性质,分别求得${a_{k_n}}$项的通项公式,可得${k_n}=2•{3^{n-1}}-1$,再利用拆项法进行求和,可得结论.

解答 解:设{an}首项为a1,公差为d,∵a1,a5,a17成等比数列,∴a52=a1a17
∴(a1+4d)2=a1(a1+16d),∴a1=2d.
设等比数列公比为q,则 q=$\frac{{a}_{5}}{{a}_{1}}$=$\frac{{a}_{1}+4d}{{a}_{1}}$=3,
对${a_{k_n}}$项来说,在等差数列中:${a_{k_n}}={a_1}+({k_n}-1)d=\frac{{{k_n}+1}}{2}{a_1}$,在等比数列中:${a_{k_n}}={a_1}{q^{n-1}}={a_1}{3^{n-1}}$.
∴${k_n}=2•{3^{n-1}}-1$,
∴${k_1}+{k_2}+…{k_n}=(2•{3^0}-1)+(2•{3^1}-1)+…+(2•{3^{n-1}}-1)=2(1+3+…+{3^{n-1}})-n$=3n-n-1.

点评 本题主要考查等差数列、等比数列的定义和性质的综合应用,用拆项法进行求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数f(x)=-x2-4x+1的最大值和单调增区间分别为(  )
A.5,(-2,+∞)B.-5,(-2,+∞)C.5,(-∞,2)D.5,(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,直线y=$\frac{1}{2}$x与抛物线y=$\frac{1}{8}$x2-4交于A,B两点,线段AB的垂直平分线与直线y=-5交于Q点,当P为抛物线上位于线段AB下方(含A,B)的动点时,则△OPQ面积的最大值为30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.正数a,b且满足2a+8b=1,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在矩形ABCD中,AB=$\sqrt{3}$,BC=3,E在AC上,若BE⊥AC,则ED的长=$\frac{\sqrt{21}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.i是虚数单位,则i607的共轭复数为i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-2ax+2a,g(x)=(2-a)x,其中a∈R.
(1)若f(x)为偶函数,求a的值;
(2)求关于x的不等式f(x)>g(x)的解集;
(3)若f(x)-g(x)>-4对任意的x∈[3,6]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在平行四边形ABCD中,AB=1,AD=2,∠BAD=60°,BD,AC相交于点O,M为BO中点.设向量$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow b$.
(1)试用$\overrightarrow a$,$\overrightarrow b$表示$\overrightarrow{BD}$和$\overrightarrow{AM}$;
(2)证明:$\overrightarrow{AB}$⊥$\overrightarrow{BD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若$\frac{sinα+cosα}{sinα-cosα}$=$\frac{1}{2}$,则$\frac{1}{{{{cos}^2}α+sin2α}}$的值为(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.2D.-2

查看答案和解析>>

同步练习册答案