精英家教网 > 高中数学 > 题目详情
20.如图,在平行四边形ABCD中,AB=1,AD=2,∠BAD=60°,BD,AC相交于点O,M为BO中点.设向量$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow b$.
(1)试用$\overrightarrow a$,$\overrightarrow b$表示$\overrightarrow{BD}$和$\overrightarrow{AM}$;
(2)证明:$\overrightarrow{AB}$⊥$\overrightarrow{BD}$.

分析 (1)根据向量的加减的几何意义求出,
(2)根据向量的垂直和向量的数量积的关系即可证明.

解答 解:(1)∵$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,
∴$\overrightarrow{BD}=\overrightarrow{AD}-\overrightarrow{AB}=\overrightarrow b-\overrightarrow a$.    
又∵M为BO中点,
∴$\overrightarrow{BM}=\frac{1}{4}\overrightarrow{BD}=\frac{1}{4}(\overrightarrow b-\overrightarrow a)$,
∴$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow a+\frac{1}{4}(\overrightarrow b-\overrightarrow a)=\frac{3}{4}\overrightarrow a+\frac{1}{4}\overrightarrow b$.             
(2)∵$\overrightarrow{AB}•\overrightarrow{BD}=\overrightarrow a•(\overrightarrow b-\overrightarrow a)=\overrightarrow a•\overrightarrow b-{\overrightarrow a^2}$
又∵AB=1,AD=2,∠BAD=60°,
∴$\overrightarrow a•\overrightarrow b=1×2×cos60°=1$,${\overrightarrow a^2}=|\overrightarrow a{|^2}=1$.                  
∴$\overrightarrow{AB}•\overrightarrow{BD}=\overrightarrow a•\overrightarrow b-{\overrightarrow a^2}=1-1=0$.                                     
即$\overrightarrow{AB}⊥\overrightarrow{BD}$.

点评 本题考查了向量的加减的几何意义和向量的数量积公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设等差数列{an}的前n项和为Sn,且a3=2,S7=21.
(1)求数列{an}的通项公式;
(2)设bn=2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}为等差数列,公差d≠0,其中${a_{k_1}}$,${a_{k_2}}$,…,${a_{k_n}}$恰为等比数列,若k1=1,k2=5,k3=17,求k1+k2+…+kn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a,b,c>0,则$\frac{a}{b+c}$+$\frac{4b}{c+a}$+$\frac{5c}{a+b}$的最小值为(  )
A.3$\sqrt{5}$-1B.3$\sqrt{5}$-2C.3($\sqrt{5}$-1)D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}是等差数列,a2+a7=12,a4a5=35,则an=2n-3或15-2n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(1-x)5•(1+x)3的展开式中x3的系数为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.命题p:对任意实数x都有x2+ax+1>0恒成立;命题q:关于x的方程x2-x+a=0有实数根.若“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(-2,4),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为(  )
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设A={(x,y)||x|+|y|=2}(x,y∈R).
(Ⅰ)若(x,y)∈A,试求u=x2+y2的取值范围;
(Ⅱ)设集合B={(w,v)|w2+v2=x2+y2,(x,y)∈A},试求集合B表示的区域面积.

查看答案和解析>>

同步练习册答案