精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x2-2ax+2a,g(x)=(2-a)x,其中a∈R.
(1)若f(x)为偶函数,求a的值;
(2)求关于x的不等式f(x)>g(x)的解集;
(3)若f(x)-g(x)>-4对任意的x∈[3,6]恒成立,求a的取值范围.

分析 (1)由偶函数的定义,可得a的值.
(2)将不等式转化,因式分解,分类讨论,得到解集.
(3)分离参数,将问题转化为恒等式,由基本不等式可以得到取值范围.

解答 解:(1)∵f(x)为偶函数,
∴f(-x)=f(x),
∴a=0.
(2)不等式f(x)>g(x),
整理得:x2-(2+a)x+2a>0,
(x-a)(x-2)>0,
①a<2时,不等式的解集是{x|x<a或x>2},
②a=2时,不等式的解集是{x|x≠2},
③a>2时,不等式的解集是{x|x>a或x<2},
(3)f(x)-g(x)>-4对任意的x∈[3,6]恒成立,
即x2-(2+a)x+2a>-4,
分离参数得a<x-2+$\frac{4}{x-2}$+2,
由函数的单调性得y=x-2+$\frac{4}{x-2}$+2在区间[3,4]是单调递减,在[4,6]上单调递增的,
∴a<ymin.即a<6.

点评 本题考查偶函数的定义,转化思想,因式分解,分类讨论,分离参数,以及基本不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+ax+2.
(Ⅰ)求实数a的值,使函数y=f(x)在区间[-5,5]上为偶函数;
(Ⅱ)求实数a的取值范围,使函数y=f(x)在区间[-5,5]上是单调函数;
(Ⅲ)求f(x)在区间[-5,5]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若0≤x≤1,0≤y≤4,则xy2-y的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}为等差数列,公差d≠0,其中${a_{k_1}}$,${a_{k_2}}$,…,${a_{k_n}}$恰为等比数列,若k1=1,k2=5,k3=17,求k1+k2+…+kn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设不等式组$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面区域为D,在区域D内随机取一个点,则此点到点(1,1)的距离大于1的概率是(  )
A.$\frac{4-π}{4}$B.$\frac{π-2}{2}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a,b,c>0,则$\frac{a}{b+c}$+$\frac{4b}{c+a}$+$\frac{5c}{a+b}$的最小值为(  )
A.3$\sqrt{5}$-1B.3$\sqrt{5}$-2C.3($\sqrt{5}$-1)D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}是等差数列,a2+a7=12,a4a5=35,则an=2n-3或15-2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.命题p:对任意实数x都有x2+ax+1>0恒成立;命题q:关于x的方程x2-x+a=0有实数根.若“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.甲船在岛B的正南处,AB=5km,甲船以每小时2km的速度速度向正北方向航行,同时乙船自B出发以每小时3km的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间是$\frac{5}{14}$小时.

查看答案和解析>>

同步练习册答案