精英家教网 > 高中数学 > 题目详情

如图,四棱锥中,分别为的中点,.

(1)证明:∥面
(2)求面与面所成锐角的余弦值.

(1)见解析;(2).

解析试题分析:(1)(1) 利用三角形中位线定理,得出 .
(2)利用平几何知识,可得一些线段的长度及,进一步以轴建立坐标系,
得到
确定面与面的法向量
,可得令
由又,可得令,进一步得到.
本题首先探究几何体中的线面、线线垂直关系,创造建立空间直角坐标系的条件,应用“向量法”,确定二面角的余弦值.
解答本题的关键是确定“垂直关系”,这也是难点所在,平时学习中,应特别注意转化意识的培养,能从“非规范几何体”,探索得到建立空间直角坐标系的条件.
试题解析:(1)因为分别为的中点,
所以        2分
因为
所以∥面        4分
(2)因为
所以
又因为的中点
所以
所以
,即     6分
因为,所以
分别以轴建立坐标系
所以
   8分
分别是面与面的法向量
,令
,令     11分
所以     12分

考点:直线与平面、平面与平面垂直,二面角的定义,空间向量的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,已知

(1)求异面直线夹角的余弦值;
(2)求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是正方形,侧棱⊥底面的中点,作于点

(1)证明平面
(2)证明平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿直线BD将△BCD翻折成△BCD,使得平面BCD平面ABD.

(1)求证:C'D平面ABD;
(2)求直线BD与平面BEC'所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,.

(1)设的中点,证明:平面;
(2)证明:在内存在一点,使平面,并求点,的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=AB,E是SA的中点.

(1)求证:平面BED⊥平面SAB.
(2)求直线SA与平面BED所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥S-ABCD中,ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=AD,E为CD上一点,且CE=3DE.

(1)求证:AE⊥平面SBD.
(2)M,N分别为线段SB,CD上的点,是否存在M,N,使MN⊥CD且MN⊥SB,若存在,确定M,N的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,OACBD的交点,EPB上任意一点.

(1)证明:平面EAC⊥平面PBD
(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PDAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四棱锥PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.

(1)求PA的长;
(2)求二面角B-AF-D的正弦值.

查看答案和解析>>

同步练习册答案