【题目】如图,在四边形ABCD中,AD⊥AB,∠CAB=60°,∠BCD=120°,AC=2.
(1)若∠ABC=30°,求DC;
(2)记∠ABC=θ,当θ为何值时,△BCD的面积有最小值?求出最小值.
【答案】(1)(2)θ=75°时,面积取最小值.
【解析】
(1)由题意可求∠ADC=120°,在△ACD中,可得∠CAD=90°﹣60°=30°,∠ADC=120°,进而由正弦定理解得CD的值.
(2)由题意可得可得∠CAD=30°,可求∠ADC=150°﹣θ,在△ADC中,由正弦定理解得,在△ABC中解得,利用三角形的面积公式,三角函数恒等变换的应用可求S△BCD,结合范围0°<θ<150°,可得﹣60°<2θ﹣60°<240°,利用正弦函数的性质即可求解.
解:(1)在四边形ABCD中,因为AD⊥AB,∠BCD=120°,∠ABC=30°,
所以∠ADC=120°,
在△ACD中,可得∠CAD=90°﹣60°=30°,∠ADC=120°,
AC=2,由正弦定理得:,
解得:.
(2)因为∠CAB=60°,AD⊥AB可得∠CAD=30°,
四边形内角和360°得∠ADC=150°﹣θ,
∴在△ADC中,由正弦定理得:,解得:,
在△ABC中,由正弦定理得:,解得,
∴S△BCD
,
∵0°<θ<150°,
∴﹣60°<2θ﹣60°<240°,
∴当2θ﹣60°=90°即θ=75°时,S取最小值为.
科目:高中数学 来源: 题型:
【题目】已知函数.下列命题:( )
①函数的图象关于原点对称; ②函数是周期函数;
③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是
(A)①③ (B)②③ (C)①④ (D)②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点,且在轴上截得的弦长为4.
(1)求动圆圆心的轨迹的方程;
(2)点为轨迹上任意一点,直线为轨迹上在点处的切线,直线交直线于点,过点作交轨迹于点,求的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,某区有一块空地,其中,,.当地区政府规划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖,其中都在边上,且,挖出的泥土堆放在地带上形成假山,剩下的地带开设儿童游乐场.为安全起见,需在的周围安装防护网.
(1)当时,求防护网的总长度;
(2)若要求挖人工湖用地的面积是堆假山用地的面积的倍,试确定的大小;
(3)为节省投入资金,人工湖的面积要尽可能小,问如何设计施工方案,可使的面积最小?最小面积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知标准方程下的椭圆的焦点在轴上,且经过点,它的一个焦点恰好与抛物线的焦点重合.椭圆的上顶点为,过点的直线交椭圆于两点,连接、,记直线的斜率分别为.
(1)求椭圆的标准方程;
(2)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题共13分)
已知, 或1, ,对于, 表示U和V中相对应的元素不同的个数.
(Ⅰ)令,存在m个,使得,写出m的值;
(Ⅱ)令,若,求证: ;
(Ⅲ)令,若,求所有之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【题目】已知抛物线的焦点曲线的一个焦点, 为坐标原点,点为抛物线上任意一点,过点作轴的平行线交抛物线的准线于,直线交抛物线于点.
(Ⅰ)求抛物线的方程;
(Ⅱ)求证:直线过定点,并求出此定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以平面直角坐标系的原点为极点, 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为(为参数),圆的极坐标方程为.
(1)求直线的普通方程与圆的直角坐标方程;
(2)设曲线与直线交于两点,若点的直角坐标为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com