精英家教网 > 高中数学 > 题目详情
11.某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据表1
参加社团活动不参加社团活动合计
学习积极性高17825
学习积极性一般52025
合计222850
(1)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少?
(2)运用独立检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.
P(Χ2≥k)0.050.010.001
k3.8416.63510.828
${Χ^2}=\frac{{n{{({{n_{11}}{n_{22}}-{n_{12}}{n_{21}}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$
(1)抽到参加社团活动的学生的概率是$\frac{11}{25}$,抽到不参加社团活动且学习积极性一般的学生的概率是$\frac{2}{5}$;
(2)有99.9%的把握认为学生的学习积极性与参加社团活动的态度有关系.

分析 (1)求出积极参加社团活动的学生有22人,总人数为50人,不参加社团活动且学习积极性一般的学生为20人,利用古典概型即可求得概率;
(2)根据条件中所给的数据,代入这组数据的观测值的公式,求出观测值,把观测值同临界值进行比较,得到有99.9%的把握认为学生的学习积极性与参与社团活动情况有关系.

解答 解:(1)随机从该班抽查一名学生,抽到参加社团活动的学生的概率是$\frac{22}{50}=\frac{11}{25}$,3分
抽到不参加社团活动且学习积极性一般的学生的概率是$\frac{20}{50}=\frac{2}{5}$; 6分
(2)∵Χ2=$\frac{{50{{(17×20-5×8)}^2}}}{25×25×22×28}≈11.688$,10分
∴有99.9%的把握认为学生的学习积极性与参加社团活动的态度有关系. 12分

点评 本题考查概率与统计、独立性检验,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知点P(0,2),设直线l:y=kx+b(k,b∈R)与圆C:x2+y2=4相交于异于点P的A,B两点.
(Ⅰ)若$\overrightarrow{PA}$•$\overrightarrow{PB}$=0,求b的值;
(Ⅱ)若|AB|=2$\sqrt{3}$,且直线l与两坐标轴围成的三角形的面积为$\frac{2\sqrt{3}}{3}$,求直线l的斜率k的值;
(Ⅲ)当|PA|•|PB|=4时,是否存在一定圆M,使得直线l与圆M相切?若存在,求出该圆的标准方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知三棱柱ABC-A1B1C1的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球O的表面上,且球O的表面积为7π,则此三棱柱的体积为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.执行如图所示的程序,则输出的结果为24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若实数a≥0,b≥0,且ab=0,则称a与b互补,记f(a,b)=$\sqrt{{a}^{2}+{b}^{2}}$-a-b(a≥0,b≥0),那么f(a,b)=0是a与b互补的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若点P为直线ρcosθ-ρsinθ-4=0上一点,点Q为曲线$\left\{\begin{array}{l}{x=t}\\{y=\frac{1}{4}{t}^{2}}\end{array}\right.$(t为参数)上一点,则|PQ|的最小值为$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A,B,C所对的边分别为a,b,c,且4sinAsinC-4cos2$\frac{A-C}{2}$=$\sqrt{2}$-2.
(Ⅰ)求角B的大小
(Ⅱ)若C=$\frac{π}{3}$,b=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若$\frac{a}{1-i}$=$\frac{1+i}{i}$(i为虚数单位),则a的值为(  )
A.iB.-iC.-2iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=($\sqrt{3}$sinωx+cosωx)cosωx-$\frac{1}{2}$(ω>0)的最小正周期为4π.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)已知a、b、c分别△ABC内角A、B、C的对边,满足(2a-c)cosB=bcosC,求角B的值,并求函数f(A)的值域.

查看答案和解析>>

同步练习册答案