分析 由条件,运用不等式的性质可得原式≥$\frac{y}{z}$+$\frac{z}{4y+z}$=($\frac{y}{z}$+$\frac{1}{4}$)+$\frac{\frac{1}{4}}{\frac{y}{z}+\frac{1}{4}}$-$\frac{1}{4}$,再由基本不等式即可得到所求最小值.
解答 解:x,y,z是正实数,满足2y+z≥x,
可得$\frac{y}{z}$+$\frac{z}{x+2y}$≥$\frac{y}{z}$+$\frac{z}{4y+z}$
=($\frac{y}{z}$+$\frac{1}{4}$)+$\frac{\frac{1}{4}}{\frac{y}{z}+\frac{1}{4}}$-$\frac{1}{4}$
≥2$\sqrt{(\frac{y}{z}+\frac{1}{4})•\frac{\frac{1}{4}}{\frac{y}{z}+\frac{1}{4}}}$-$\frac{1}{4}$=$\frac{3}{4}$,
当且仅当x=6y,z=4y时,取得最小值$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.
点评 本题考查最值的求法,注意运用不等式的性质和基本不等式,考查变形和运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{8}{3}$ | C. | $\frac{8\sqrt{2}}{3}$ | D. | $\frac{4\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{9}{2}$ | C. | 6 | D. | $\frac{89}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | 频数 | 频率 |
| [-3,-2) | 5 | 0.10 |
| [-2,-1) | 8 | 0.16 |
| (1,2] | a | 0.50 |
| (2,3] | 10 | b |
| (3,4] | c | 0.04 |
| 合计 | 50 | 1.00 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com