精英家教网 > 高中数学 > 题目详情
7.在平行四边形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,沿BD将四边形折起成直二面角A-BD-C,且2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,则三棱锥A-BCD的外接球的半径为(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{1}{4}$

分析 由已知中$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,可得AB⊥BD,沿BD折起后,由平面ABD⊥平面BDC,可得三棱锥A-BCD的外接球的直径为AC,进而根据2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,求出三棱锥A-BCD的外接球的半径.

解答 解:平行四边形ABCD中,
∵$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,
∴AB⊥BD,
沿BD折成直二面角A-BD-C,
∵平面ABD⊥平面BDC
三棱锥A-BCD的外接球的直径为AC,
∴AC2=AB2+BD2+CD2=2AB2+BD2=4
∴外接球的半径为1,
故选:A.

点评 本题将平行四边折叠,求折成三棱锥的外接球表面积,着重考查了面面垂直的性质、球表面积公式和球内接多面体的性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设x,y,z是正实数,满足2y+z≥x,则$\frac{y}{z}$+$\frac{z}{x+2y}$的最小值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设△ABC的内角A,B,C对边分别为a,b,c,已知A=60°,a=$\sqrt{3}$,sinB+sinC=6$\sqrt{2}$sinBsinC,则△ABC的面积为$\frac{\sqrt{3}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.以坐标轴为对称轴,原点为顶点,且过圆x2+y2-2x+6y+9=0圆心的抛物线方程是y2=9x或x2=$-\frac{1}{3}$y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数$\frac{1+i}{1-i}$-$\frac{1-i}{1+i}$=(  )
A.0B.2C.-2iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.命题“存在x0>1,使得${x}_{0}^{2}$-x0+2016>0”的否定是?x>1,x2-x+2016≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.2015年10月青岛大排档宰客一只大虾卖38元,被网友称为“天价大虾”,为了弄清楚大虾的实际情况,记者调查了青岛市45家虾类养殖户,发现主要使用两种饲料豆粕、海藻粉,数据如表:
使用豆粕未使用豆粕
使用海藻粉85
未使用海藻粉230
(1)从45家虾类养殖户中随机选1户,求该养殖户至少使用豆粕、海藻粉一种的概率.
(2)在既使用豆粕又使用海藻粉的8户养殖户中,有5户大型养殖户A1,A2,A3,A4,A5,3户中型养殖户B1,B2,B3.现从这5户大型养殖户和3户中型养殖户中各随机选1户,求A1被选中且B1未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线C:mx2+ny2=1(m<0,n>0)的一条渐近线与圆x2+y2-6x-2y+9=0相切,则C的离心率等于(  )
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{25}{16}$D.$\frac{5}{3}$或$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x|2x-1≥3},集合B={x|y=$\frac{sinx}{{\sqrt{5-x}}}$},则A∩B=(  )
A.(2,5)B.[2,5]C.(2,5]D.[2,5)

查看答案和解析>>

同步练习册答案