| A. | 1 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{1}{4}$ |
分析 由已知中$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,可得AB⊥BD,沿BD折起后,由平面ABD⊥平面BDC,可得三棱锥A-BCD的外接球的直径为AC,进而根据2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,求出三棱锥A-BCD的外接球的半径.
解答 解:平行四边形ABCD中,
∵$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,
∴AB⊥BD,
沿BD折成直二面角A-BD-C,
∵平面ABD⊥平面BDC
三棱锥A-BCD的外接球的直径为AC,
∴AC2=AB2+BD2+CD2=2AB2+BD2=4
∴外接球的半径为1,
故选:A.
点评 本题将平行四边折叠,求折成三棱锥的外接球表面积,着重考查了面面垂直的性质、球表面积公式和球内接多面体的性质等知识,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 使用豆粕 | 未使用豆粕 | |
| 使用海藻粉 | 8 | 5 |
| 未使用海藻粉 | 2 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $\frac{25}{16}$ | D. | $\frac{5}{3}$或$\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,5) | B. | [2,5] | C. | (2,5] | D. | [2,5) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com