精英家教网 > 高中数学 > 题目详情
18.设△ABC的内角A,B,C对边分别为a,b,c,已知A=60°,a=$\sqrt{3}$,sinB+sinC=6$\sqrt{2}$sinBsinC,则△ABC的面积为$\frac{\sqrt{3}}{8}$.

分析 由已知及正弦定理可得sinB=$\frac{b}{2}$,sinC=$\frac{c}{2}$,化简已知等式可得b+c=3$\sqrt{2}$bc,两边平方可得:b2+c2+2bc=18b2c2,又由余弦定理可得3=b2+c2-bc,从而联立即可解得bc的值,进而利用三角形面积公式即可计算得解.

解答 解:∵A=60°,a=$\sqrt{3}$,
∴由正弦定理可得:$\frac{b}{sinB}=\frac{c}{sinC}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}=2$,可得:sinB=$\frac{b}{2}$,sinC=$\frac{c}{2}$,
∵sinB+sinC=6$\sqrt{2}$sinBsinC,可得:$\frac{b}{2}$+$\frac{c}{2}$=6$\sqrt{2}$×$\frac{b}{2}$×$\frac{c}{2}$,化简可得:b+c=3$\sqrt{2}$bc,
∴两边平方可得:b2+c2+2bc=18b2c2,①
又∵由余弦定理a2=b2+c2-2bccosA,可得:3=b2+c2-bc,②
∴联立①②可得:6b2c2-bc-1=0,解得:bc=$\frac{1}{2}$,或-$\frac{1}{3}$(舍去),
∴△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\frac{1}{2}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{8}$.
故答案为:$\frac{\sqrt{3}}{8}$.

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图是其几何体的三视图,则该几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\frac{8\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如表频率分布表:
分组频数频率
[-3,-2)50.10
[-2,-1)80.16
(1,2]a0.50
(2,3]10b
(3,4]c0.04
合计501.00
(1)写出如表表格中缺少的数据a,b,c的值:a=25,b=0.2,c=2.
(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的频率;
(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设等比数列{an},a1=1,a4=8,则S10=1023.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知三棱锥P-ABC的三条侧棱的长均为4,记三棱锥P-ABC三个侧面的面积分别为S1,S2,S3,则当S1+S2+S3取到最大值时,三棱锥P-ABC外接球的表面积为(  )
A.192πB.96πC.64πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ=8$\sqrt{2}$cos(θ-$\frac{3π}{4}$),曲线C2的参数方程为$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$,(θ为参数).
(1)将曲线C1的极坐标方程化为直角坐标方程,将曲线C2的参数方程化为普通方程;
(2)若P是曲线C2上的动点,求P到直线l:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$,(t为参数)的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.关于正态曲线性质的叙述:
①曲线关于直线x=μ对称,这个曲线在x轴上方;
②曲线关于直线x=σ对称,这个曲线只有当x∈(-3σ,3σ)时才在x轴上方;
③曲线关于y轴对称,因为曲线对应的正态密度函数是一个偶函数;
④曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低;
⑤曲线的对称轴由μ确定,曲线的形状由σ确定;
⑥σ越大,曲线越“矮胖”,σ越小,曲线越“高瘦”.
上述说法正确的是(  )
A.①④⑤⑥B.②④⑤C.③④⑤⑥D.①⑤⑥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平行四边形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,沿BD将四边形折起成直二面角A-BD-C,且2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,则三棱锥A-BCD的外接球的半径为(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.依次连接正六边形各边的中点,得到一个小正六边形,再依次连接这个小正六边形各边的中点,得到一个更小的正六边形,往原正六边形内随机洒一粒种子,则种子落在最小的正六边形内的概率为(  )
A.$\frac{3}{4}$B.$\frac{9}{16}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案