分析 由已知及正弦定理可得sinB=$\frac{b}{2}$,sinC=$\frac{c}{2}$,化简已知等式可得b+c=3$\sqrt{2}$bc,两边平方可得:b2+c2+2bc=18b2c2,又由余弦定理可得3=b2+c2-bc,从而联立即可解得bc的值,进而利用三角形面积公式即可计算得解.
解答 解:∵A=60°,a=$\sqrt{3}$,
∴由正弦定理可得:$\frac{b}{sinB}=\frac{c}{sinC}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}=2$,可得:sinB=$\frac{b}{2}$,sinC=$\frac{c}{2}$,
∵sinB+sinC=6$\sqrt{2}$sinBsinC,可得:$\frac{b}{2}$+$\frac{c}{2}$=6$\sqrt{2}$×$\frac{b}{2}$×$\frac{c}{2}$,化简可得:b+c=3$\sqrt{2}$bc,
∴两边平方可得:b2+c2+2bc=18b2c2,①
又∵由余弦定理a2=b2+c2-2bccosA,可得:3=b2+c2-bc,②
∴联立①②可得:6b2c2-bc-1=0,解得:bc=$\frac{1}{2}$,或-$\frac{1}{3}$(舍去),
∴△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\frac{1}{2}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{8}$.
故答案为:$\frac{\sqrt{3}}{8}$.
点评 本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{8}{3}$ | C. | $\frac{8\sqrt{2}}{3}$ | D. | $\frac{4\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | 频数 | 频率 |
| [-3,-2) | 5 | 0.10 |
| [-2,-1) | 8 | 0.16 |
| (1,2] | a | 0.50 |
| (2,3] | 10 | b |
| (3,4] | c | 0.04 |
| 合计 | 50 | 1.00 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 192π | B. | 96π | C. | 64π | D. | 48π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④⑤⑥ | B. | ②④⑤ | C. | ③④⑤⑥ | D. | ①⑤⑥ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{9}{16}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com