| A. | $\frac{3}{4}$ | B. | $\frac{9}{16}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{2}{3}$ |
分析 求出最小的正六边形A1B1C1D1E1F1的边长,可得其面积,计算正六边形ABCDEF的面积,即可求出种子落在最小的正六边形内的概率.
解答
解:如图,原正六边形为ABCDEF,最小的正六边形为A1B1C1D1E1F1,
设AB=a,由已知得,∠AOB=60°,则∠AOM=$\frac{1}{2}$,∠AOB=30°,
∴OM=OAcos∠AOM=acos30°=$\frac{\sqrt{3}}{2}$a,
即中间正六边形的边长OM=$\frac{\sqrt{3}}{2}$a,以此类推,最小的正六边形A1B1C1D1E1F1的边长等于$O{B_1}=\frac{{\sqrt{3}}}{2}OM=\frac{{\sqrt{3}}}{2}•\frac{{\sqrt{3}a}}{2}=\frac{3a}{4}$,
所以由几何概型得,种子落在最小的正六边形内的概率为$P=\frac{{{S_{正六边形{A_1}{B_1}{C_1}{D_1}{E_1}{F_1}}}}}{{{S_{正六边形ABCDEF}}}}=\frac{{\frac{1}{2}•\frac{3a}{4}•\frac{3a}{4}•\frac{{\sqrt{3}}}{2}•6}}{{\frac{1}{2}•a•a•\frac{{\sqrt{3}}}{2}•6}}=\frac{9}{16}$,
故选:B.
点评 本题考查几何概型,考查概率的计算,正确求面积是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 使用豆粕 | 未使用豆粕 | |
| 使用海藻粉 | 8 | 5 |
| 未使用海藻粉 | 2 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $\frac{25}{16}$ | D. | $\frac{5}{3}$或$\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,5) | B. | [2,5] | C. | (2,5] | D. | [2,5) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com