精英家教网 > 高中数学 > 题目详情
如图,已知底面为菱形的四棱锥P-ABCD中,△ABC是边长为2的正三角形,AP=BP=
2
2
PC=
2

(1)求证:平面PAB⊥平面ABCD;
(2)求三棱锥D-PAC的体积.
考点:平面与平面垂直的判定,棱柱、棱锥、棱台的体积
专题:计算题,证明题,空间位置关系与距离
分析:(1)取AB的中点E,连接PE,CE,证明PE⊥平面ABCD,(2)VD-PAC=VP-DAC=
1
3
SDAC•PE
.底面与高都很简单.
解答: 解:(1)证明:如图所示,取AB的中点E,连接PE,CE,
则PE是等腰三角形PAB的底边上的中线,则PE⊥AB.
∴PE=1,CE=
3
,PC=2.∴PE⊥CE.
又∵AB,CE?平面ABCD,且AB∩CE=E,
∴PE⊥平面ABCD,
∴平面PAB⊥平面ABCD;
(2)VD-PAC=VP-DAC
=
1
3
SDAC•PE
=
1
3
1
2
•2•2•sin60°•1

=
1
3
1
2
•2•2•
3
2
•1
=
3
3
点评:本题考查了学生的作图能力,及转化的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在10件产品中,一等品7件,二等品2件(一等品与二等品都是正品),次品1件,现从中任取2件,则:
(1)两件都是一等品的概率是多少?
(2)两件都是二等品的概率是多少?
(3)两件都是正品的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,cos
B
2
=
2
5
5

(Ⅰ)若b=3,求sinA的值;
(Ⅱ)若C为钝角,求边c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,0),
b
=(1,1),根据条件,分别求实数λ的值.
(Ⅰ)(
a
b
)⊥
a

(Ⅱ)(
a
b
)∥(λ
a
+
b
);
(Ⅲ)(
a
b
)与λ
a
的夹角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:

x2+ax-2
x2-x+1
<2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列几何体的三视图,分别求出它们的表面积S和体积V:

查看答案和解析>>

科目:高中数学 来源: 题型:

在底面半径为2
2
,母线长为2
3
的圆锥中内接一个正四棱柱.若正四棱柱恰为正方体.
(1)求正方体的表面积和体积;
(2)求四棱柱的侧面积最大时,该四棱柱的底面边长为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)是圆C:x2+y2=1上的任意一点,则x+2y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C:x2+y2-6x+5=0,点A,B在圆C上,且AB=2
3
,则|
OA
+
OB
|的最大值是
 

查看答案和解析>>

同步练习册答案