精英家教网 > 高中数学 > 题目详情
6.在数列{an}中,若a1=2,且对任意正整数m、k,总有am+k=am+ak,则{an}的前n项和为Sn=(  )
A.n(3n-1)B.$\frac{n(n+3)}{2}$C.n(n+1)D.$\frac{n(3n+1)}{2}$

分析 a1=2,且对任意正整数m、k,总有am+k=am+ak,可得an+1-an=2,再利用等差数列的通项公式及其前n项和公式即可得出.

解答 解:a1=2,且对任意正整数m、k,总有am+k=am+ak
∴an+1=an+a1
即an+1-an=2,
∴数列{an}是等差数列,首项为2,公差为2.
则前n项和为Sn=2n+$\frac{n(n-1)}{2}$×2=n2+n.
故选:C.

点评 本题考查了递推关系的应用、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设等比数列{an}的前n项和为Sn,若S10=40,S20=120,则S30=280.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2cosx(sinx+cosx)-1
(Ⅰ)求f(x)在区间[0,$\frac{π}{4}$]上的最大值;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f($\frac{3}{4}$B)=1,a+c=2,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{bn}为单调递增的等差数列,b3+b8=26,b5b6=168,设数列{an}满足$2{a_1}+{2^2}{a_2}+{2^3}{a_3}+…+{2^n}{a_n}={2^{b_n}}$
(1)求数列{bn}的通项;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设△ABC的三个内角A、B、C所对的边分别为a、b、c,已知sin(A-$\frac{π}{6}$)=cosA
(1)求角A的大小;
(2)若a=1,b+c=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设x0为函数f(x)=sinπx的零点,且满足|x0|+|f(x0+$\frac{1}{2}$)|<33,则这样的零点有(  )
A.61个B.63个C.65个D.67个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}是公差为正数的等差数列,a1+a4=12,a1•a4=27,数列{bn}的前n项和为Tn,且Tn=1-bn(n∈N*
(1)求数列{an},{bn}的通项公式;
(2)记cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△OAB中,已知P为线段AB上一点,$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$.
(1)若$\overrightarrow{BP}$=2$\overrightarrow{PA}$,求x,y的值;
(2)若$\overrightarrow{BP}$=3$\overrightarrow{PA}$,|$\overrightarrow{OA}$|=4,|$\overrightarrow{OB}$|=2,且$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为60°,求$\overrightarrow{OP}$•$\overrightarrow{AB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果关于x的不等式ax2-丨x+1丨+2a<0的解集为空集,则实数的取值范围是(  )
A.[$\frac{1+\sqrt{3}}{4}$,+∞)B.[2,+∞)C.[$\frac{\sqrt{3}-1}{4}$,+∞)D.(-∞,2]

查看答案和解析>>

同步练习册答案