精英家教网 > 高中数学 > 题目详情
4.如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在平面和圆O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求证:平面DAF⊥平面CBF;
(Ⅱ)设几何体F-ABCD、F-BCE的体积分别为V1、V2,求V1:V2的值.

分析 (1)由面面垂直可得AD⊥平面ABEF,从而得到AD⊥BF,由直径的性质得BF⊥AF,故得出BF⊥平面ADF,从而得出平面DAF⊥平面CBF;
(2)VF-BCE=VC-BEF,设AD=a,则可用a表示出V1,V2.从而得出体积比.

解答 证明:(1)∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,AD⊥AB,AD?平面ABCD,
∴AD⊥平面ABEF,∵BF?平面ABE,
∴AD⊥BF,
∵AB是圆O的直径,
∴BF⊥AF,又AD?平面ADF,AF?平面ADF,AD∩AF=A,
∴BF⊥平面ADF,∵BF?平面BCF,
∴平面DAF⊥平面CBF.
(2).连结OE,OF,则OE=OF=EF=1,
∴△AOF,△OEF,△BOE是等边三角形,
过F作FM⊥AB于M,则FM=$\frac{\sqrt{3}}{2}$,FM⊥平面ABCD,
设AD=BC=a,
则V1=VF-ABCD=$\frac{1}{3}{S}_{矩形ABCD}•FM$=$\frac{1}{3}×2a×\frac{\sqrt{3}}{2}=\frac{\sqrt{3}a}{3}$.
V2=VF-BCE=VC-BEF=$\frac{1}{3}{S}_{△BEF}•BC$=$\frac{1}{3}×\frac{1}{2}×1×\frac{\sqrt{3}}{2}×a$=$\frac{\sqrt{3}a}{12}$.
∴V1:V2=$\frac{\sqrt{3}a}{3}$:$\frac{\sqrt{3}a}{12}$=4:1.

点评 本题考查了面面垂直的性质与判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在三棱锥P-ABC内任取一点Q,使VQ-ABC<$\frac{1}{3}{V_{P-ABC}}$的概率等于$\frac{19}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.类比实数的运算性质猜想复数的运算性质:
①“mn=nm”类比得到“z1z2=z2z1”;
②“|m•n|=|m|•|n|”类比得到“|z1•z2|=|z1|•|z2|”;
③“|x|=1⇒x=±1”类比得到“|z|=1⇒z=±1”
④“|x|2=x2”类比得到“|z|2=z2
以上的式子中,类比得到的结论正确的是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知(1-2x)9=a0+a1x+a2x2+…+a9x9,则a0+a1+a2+…+a9=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=a1sin(x+a1)+a2sin(x+a2)+…+ansin(x+an),其中ai,aj(i=1,2,…,n,n∈N*,n≥2)为已知实常数,x∈R,下列关于函数f(x)的性质判断正确的个数是(  )
①若f(0)=f($\frac{π}{2}$)=0,则f(x)=0对任意实数x恒成立;
②若f(0)=0,则函数f(x)为奇函数;
③若f($\frac{π}{2}$)=0,则函数f(x)为偶函数;
④当f2(0)+f2($\frac{π}{2}$)≠0时,若f(x1)=f(x2)=0,则x1-x2=kπ(k∈Z)
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知A、B、C、D四点的坐标分别是A(3,0),B(0,3),C(sinα,cosα),D(1,1).
(Ⅰ)若|AC|=|BC|,求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值;
(Ⅱ)若|CD|2=$\frac{5}{3}$,求$\frac{si{n}^{2}α+sinαcosα}{1+tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系内,若角α的终边经过点P(1,-2),则sin2α=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等比数列{an}中,a2=8,a5=64,则a3=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,输出的n为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案