【题目】如图,在三棱锥
中,
是等边三角形,
是
的中点,
,二面角
的大小为
.![]()
(1)求证:平面
平面
;
(2)求
与平面
所成角的正弦值.
【答案】
(1)解:
面 ![]()
又
面
,所以 面
面 ![]()
即平面
平面 ![]()
(2)解:方法一:
就是
的平面角,得 ![]()
作
于
, 连结
,则
,又 ![]()
∴
面
,∴
就是直线
与平面
所成的角
令
,
, ![]()
∴ ![]()
方法二:
,如图建立空间直角坐标系,![]()
则
,令
, 则
, ![]()
又
为二面角
的平面角,得 ![]()
设
,则 ![]()
设
为面
的一法向量,则
![]()
得
取
,得 ![]()
又
, 得 ![]()
设
为平面
所成角为
, 则 ![]()
【解析】(1)证明AC⊥面PBD,即可证明平面PBD⊥平面PAC;
(2)求出面PAC的法向量,利用向量的方法求AB与平面PAC所成角的正弦值.
【考点精析】关于本题考查的用空间向量求直线与平面的夹角,需要了解设直线
的方向向量为
,平面
的法向量为
,直线与平面所成的角为
,
与
的夹角为
, 则
为
的余角或
的补角的余角.即有:
才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】设A,B是两个非空集合,定义运算A×B={x|x∈A∪B且xA∩B}.已知A={x|y=
},B={y|y=2x , x>0},则A×B=( )
A.[0,1]∪(2,+∞)
B.[0,1)∪[2,+∞)
C.[0,1]
D.[0,2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的个数是( ) ①对于命题p:x∈R,使得x2+x+1<0,则¬p:x∈R,均有x2+x+1>0;
②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
③回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为
=1.23x+0.08;
④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.
A.1
B.3
C.2
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是( )
A.(4,2018)
B.(4,2020)
C.(3,2020)
D.(2,2020)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线y2=4x的焦点为F,过点F作直线l与抛物线分别交于两点A,B,若点M满足
=
(
+
),过M作y轴的垂线与抛物线交于点P,若|PF|=2,则M点的横坐标为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且a>b,a>c.△ABC的外接圆半径为1,
,若边BC上一点D满足BD=2DC,且∠BAD=90°,则△ABC的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com