精英家教网 > 高中数学 > 题目详情

【题目】设A,B是两个非空集合,定义运算A×B={x|x∈A∪B且xA∩B}.已知A={x|y= },B={y|y=2x , x>0},则A×B=( )
A.[0,1]∪(2,+∞)
B.[0,1)∪[2,+∞)
C.[0,1]
D.[0,2]

【答案】A
【解析】由题意得A={x|2x-x2≥0}={x|0≤x≤2},B={y|y>1},所以A∪B=[0,+∞),A∩B=(1,2],所以A×B=[0,1]∪(2,+∞).所以答案是:A
【考点精析】本题主要考查了交、并、补集的混合运算的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α﹣2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:今有刍童,下广三丈,袤四丈,上袤二丈,无广,高一丈,问:积几何?其意思是说:“今有底面为矩形的屋脊状楔体,下底面宽3丈,长4丈;上棱长2丈,高一丈.问它的体积是多少?”已知一丈为10尺,现将该楔体的三视图给出如右图所示,其中网格纸上小正方形的边长为1,则该楔体的体积为(  )

A.5000立方尺
B.5500立方尺
C.6000立方尺
D.6500立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,底面梯形 中, ,平面 平面 是等边三角形,已知

(1)求证:平面 平面
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线 平面 ,垂足为 ,正四面体(所有棱长都相等的三棱锥) 的棱长为2, 在平面 内, 是直线 上的动点,当 的距离为最大时,正四面体在平面 上的射影面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:m∈R且m+1≤0;命题q:x∈R,x2+mx+1>0恒成立.若p∧q为假命题,则m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)设 ,若曲线 处的切线很过定点 ,求 的坐标;
(2)设 的导函数,当 时, ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供不应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:
;② ;③ .(以上三式中、 均为常数,且
(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)
(2)若 ,求出所选函数 的解析式(注:函数定义域是 .其中 表示8月1日, 表示9月1日,…,以此类推);
(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥 中, 是等边三角形, 的中点, ,二面角 的大小为

(1)求证:平面 平面
(2)求 与平面 所成角的正弦值.

查看答案和解析>>

同步练习册答案