精英家教网 > 高中数学 > 题目详情
3.已知F是曲线$\left\{\begin{array}{l}{x=2\sqrt{2}cosθ}\\{y=1+cos2θ}\end{array}\right.$(θ∈R)的焦点,A(1,0),则|AF|的值等于$\sqrt{2}$.

分析 求出曲线的普通方程为x2=4y,从而求出曲线的焦点F(0,1),由此利用两点间距离公式能求出|AF|的值.

解答 解:∵曲线$\left\{\begin{array}{l}{x=2\sqrt{2}cosθ}\\{y=1+cos2θ}\end{array}\right.$(θ∈R),
∴y=1+2cos2θ-1=2cos2θ,
又x2=8cos2θ,
∴曲线的普通方程为x2=4y,
∴曲线的焦点F(0,1),
∵A(1,0),∴|AF|=$\sqrt{1+1}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查线段长的求法,考查极坐标方程、直角坐标方程、参数方程的互化、两点间距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知α是锐角,若cos(α+$\frac{π}{6}$)=$\frac{5}{13}$,则sin(α-$\frac{π}{12}$)=(  )
A.-$\frac{17\sqrt{2}}{26}$B.-$\frac{7\sqrt{2}}{26}$C.$\frac{7\sqrt{2}}{26}$D.$\frac{17\sqrt{2}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,a、b、c分别为角ABC所对的边,且$\sqrt{3}$acosC=csinA.
(1)求角C的大小.
(2)若c=2$\sqrt{7}$,且△ABC的面积为6$\sqrt{3}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{$\frac{{a}_{n}}{2n-1}$}的前n项和为Sn,若Sn+$\frac{{4}^{n+1}}{{5}^{n}}$=4,则数列{an}的前n项和Tn=36-$(8n+36)×(\frac{4}{5})^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,三棱锥P-ABC中,PB⊥BA,PC⊥CA,且PC=2CA=2,则三棱锥P-ABC的外接球表面积为(  )
A.B.C.12πD.20π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=4+5cost}\\{y=5+5sint}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式$d≈\root{3}{{\frac{16}{3}V}}$,人们还用过一些类似的近似公式,根据π=3.14159…判断,下列近似公式中最精确的一个是(  )
A.$d≈\root{3}{{\frac{60}{31}V}}$B.$d≈\root{3}{2V}$C.$d≈\root{3}{{\frac{15}{8}V}}$D.$d≈\root{3}{{\frac{21}{11}V}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-1|-2|x+1|的最大值为k.
(1)求k的值;
(2)若a,b,c∈R,$\frac{{{a^2}+{c^2}}}{2}+{b^2}=k$,求b(a+c)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,∠BAC=120°,AC=2AB=4,点D在BC上,且AD=BD,则AD=$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

同步练习册答案