精英家教网 > 高中数学 > 题目详情
14.在△ABC中,a、b、c分别为角ABC所对的边,且$\sqrt{3}$acosC=csinA.
(1)求角C的大小.
(2)若c=2$\sqrt{7}$,且△ABC的面积为6$\sqrt{3}$,求a+b的值.

分析 (1)已知等式变形后利用正弦定理化简,整理后再利用同角三角函数间的基本关系求出tanC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数;
(2)由余弦定理可得:28=(a+b)2-3ab,由三角形面积公式可解得:ab=24,进而解得a+b的值.

解答 解:(1)由csinA=$\sqrt{3}$acosC,结合正弦定理得,$\frac{a}{sinA}=\frac{c}{\sqrt{3}cosC}=\frac{c}{sinC}$,
∴sinC=$\sqrt{3}$cosC,即tanC=$\sqrt{3}$,
∵0<C<π,
∴C=$\frac{π}{3}$;
(2)∵C=$\frac{π}{3}$,c=2$\sqrt{7}$,
∴由余弦定理可得:28=a2+b2-ab=(a+b)2-3ab,
∵△ABC的面积为6$\sqrt{3}$=$\frac{1}{2}$absinC=$\frac{1}{2}×\frac{\sqrt{3}}{2}$ab,
解得:ab=24,
∴28=(a+b)2-3ab=(a+b)2-72,解得a+b=10.

点评 此题考查了正弦定理,余弦定理、三角形面积公式以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如图,已知点D为三角形ABC边BC上一点,$\overrightarrow{BD}$=3$\overrightarrow{DC}$,En(n∈N*)为AC边上的一列点,满足$\overrightarrow{{E}_{n}A}$=$\frac{1}{4}$an+1$\overrightarrow{{E}_{n}B}$-(3an+2)$\overrightarrow{{E}_{n}D}$,其中实数列{an}中,an>0,a1=1,则{an}的通项公式为(  )
A.3•2n-1-1B.2n-1C.3n-2D.2•3n-1-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知定点A(a,0)和定直线x=b(0<a<b),动点P,Q分别在y轴和直线x=b上移动,且满足AP⊥AQ,侧△APQ的面积取得最小值时的点P的坐标为(0,a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图给出的是计算$1+\frac{1}{3}+\frac{1}{5}++\frac{1}{119}$的值的一个程序框图,其中判断框内可以填入的条件是(  )
A.i≤119?B.i≥119?C.i≤60?D.i≥60?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.参数方程为$\left\{{\begin{array}{l}{x=-3+2cosθ}\\{y=4+2sinθ}\end{array}}\right.(θ为参数)$,表示的曲线是(  )
A.B.椭圆C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知不等式|x-2|<|x|的解集为$({\frac{m}{2},+∞})$.若不等式a-5<|x+1|-|x-m|<a+2对x∈(0,+∞)恒成立,则实数a的取值范围为(1,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|x+1|-a|x-1|,若f(x)≤a|x+3|,则a的最小值$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知F是曲线$\left\{\begin{array}{l}{x=2\sqrt{2}cosθ}\\{y=1+cos2θ}\end{array}\right.$(θ∈R)的焦点,A(1,0),则|AF|的值等于$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)是R上的奇函数,且满足f(π-x)=f(x),当0≤x≤$\frac{π}{2}$时,f(x)=cosx-1,则当0≤x≤π时,f(x)的图象与x轴所围成图形的面积为(  )
A.π-2B.2π-4C.3π-6D.4π-8

查看答案和解析>>

同步练习册答案