精英家教网 > 高中数学 > 题目详情
11.如图l,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且$\frac{DG}{GH}$=$\frac{BR}{RH}$.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示,
(I)求证:GR⊥平面PEF;
(Ⅱ)若正方形ABCD的边长为4,求三棱锥P-DEF的内切球的半径.

分析 (Ⅰ)推导出PD⊥平面PEF,RG∥PD,由此能证明GR⊥平面PEF.
(Ⅱ)设三棱锥P-DEF的内切球半径为r,由三棱锥的体积V=$\frac{1}{3}({S}_{△PEF}+2{S}_{△DPF}+{S}_{△DEF})•r$,能求出棱锥P-DEF的内切球的半径.

解答 证明:(Ⅰ)在正方形ABCD中,∠A、∠B、∠C均为直角,
∴在三棱锥P-DEF中,PE,PF,PD三条线段两两垂直,
∴PD⊥平面PEF,
∵$\frac{DG}{GH}$=$\frac{BR}{RH}$,即$\frac{DG}{GH}=\frac{PR}{RH}$,∴在△PDH中,RG∥PD,
∴GR⊥平面PEF.
解:(Ⅱ)正方形ABCD边长为4,
由题意PE=PF=2,PD=4,EF=2$\sqrt{2}$,DF=2$\sqrt{5}$,
∴S△PEF=2,S△PFD=S△DPE=4,
${S}_{△DEF}=\frac{1}{2}×2\sqrt{2}×\sqrt{(2\sqrt{5})^{2}-(\sqrt{2})^{2}}$=6,
设三棱锥P-DEF的内切球半径为r,
则三棱锥的体积:
${V}_{P-DEF}=\frac{1}{6}×2×2×4$=$\frac{1}{3}({S}_{△PEF}+2{S}_{△DPF}+{S}_{△DEF})•r$,
解得r=$\frac{1}{2}$,
∴三棱锥P-DEF的内切球的半径为$\frac{1}{2}$.

点评 本题考查线面垂直的证明,考查三棱锥的内切的半径的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.求187与119的最大公约数结果用5进制表示32(5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义A*B,B*C,C*D,D*A的运算分别对应下面图中的(1),(2),(3),(4),则图中,a,b对应的运算是(  )
A.B*D,A*DB.B*D,A*CC.B*C,A*DD.C*D,A*D

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,BC:AB=2:$\sqrt{3}$,∠B=30°,则∠C=(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)的定义在R上的奇函数,当x>0时,f(x)=1+ax(a>0)且a≠1),若f(-1)=-$\frac{3}{2}$,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知α,β,γ是三个不同的平面,l,m是两条不同的直线,则下列命题一定正确的是(  )
A.若l丄α,l∥β则 α∥β
B.若γ丄α,γ丄β,则 α∥β
C.若l∥m且 l?α,m?β,l∥β,m∥α,则 α∥β
D.若l,m 异面,且 l?α,m?β,l∥β,m∥α,则 α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数①f(x)=x2;②f(x)=ex③f(x)=lnx ④f(x)=cosx.其中对于f(x)定义域内的 任意一个xl都存在唯一的x2,使f(x1) f(x2)=l成立的函数是(  )
A.B.C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,直线l1:x=-2,曲线$C:\left\{\begin{array}{l}x=2cosθ\\ y=2+2sinθ\end{array}\right.$(θ为参数),以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系.
(1)求直线l1及曲线C的极坐标方程;
(2)若直线l2的极坐标方程为$θ=\frac{π}{4}$(ρ∈R),设l2与曲线C的交点为M,N,求△CMN的面积及l1与l2交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.二项式(ax3+$\frac{1}{\sqrt{x}}$)7的展开式中常数项为14,则a=2.

查看答案和解析>>

同步练习册答案