精英家教网 > 高中数学 > 题目详情
12.已知等差数列{an}的前5项的和为55,且a6+a7=36.
(1)求数列{an}的通项公式;
(2)设数列bn=$\frac{4}{({a}_{n}-5)({a}_{n}-1)}$,且数列{bn}的前n项和为Sn,证明:Sn<$\frac{3}{4}$.

分析 (1)由等差数列通项公式和前n项和公式列出方程组,求出首项与公差,由此能求出数列{an}的通项公式;
(2)由bn=$\frac{4}{({a}_{n}-5)({a}_{n}-1)}$=$\frac{4}{2n•(2n+4)}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),利用裂项求和法能求出数列{bn}的前n项和,再由不等式的性质即可得证.

解答 解:(1)设等差数列{an}的公差为d,
由前5项的和为55,且a6+a7=36,
可得$\left\{\begin{array}{l}{5{a}_{1}+\frac{5×4}{2}•d=55}\\{2{a}_{1}+11d=36}\end{array}\right.$,
解得a1=7,d=2,
则数列{an}的通项公式an=7+(n-1)×2=2n+5;
(2)证明:bn=$\frac{4}{({a}_{n}-5)({a}_{n}-1)}$=$\frac{4}{2n•(2n+4)}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
可得数列{bn}的前n项和:
Sn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$-$\frac{1}{n+2}$)<$\frac{3}{4}$,
即有原不等式成立.

点评 本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知f(x)=ln(x+$\frac{4}{x}-a$),若对任意的m∈R,方程f(x)=m均为正实数解,则实数a的取值范围是(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=BB1=1,B1C=2.
(Ⅰ)求证:平面B1AC⊥平面ABB1A1
(Ⅱ)求直线A1C与平面B1AC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若直线y=-x+a与曲线y=$\frac{1}{x}$相切,则a=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数y=$\frac{f(x)}{{e}^{x}}$为一次函数,且f(0)=-3,f′(0)=-2,则(  )
A.f(2sin2)>f(3sin3)>f(4sin4)B.f(4sin4)>f(3sin3)>f(2sin2)
C.f(3sin3)>f(4sin4)>f(2sin2)D.f(2sin2)>f(4sin4)>f(3sin3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知g(x)=x2-2x-3,f(x)=ax+2.(a>0).
(1)若对于x∈[3,6]时,总存在x0,使得f(x0)=g(x0),求a的取值范围;
(2)若g(x-b)=0在(-1,6)上恒有一个实数根.求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知关于x的不等式1nx-$\frac{a(x-1)}{2}$<0(a∈R)在(1,+∞)上恒成立.
(1)记a的最小值为a′,求f(x)=a′x2+lnx在(1,f(1))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在某路段车辆检测点,随机抽取了400辆过往汽车进行车速检测,检测结果的频率分布直方图如图所示,则这400辆汽车中车速大于90km/h的汽车约有(  )
A.12辆B.80辆C.100辆D.120辆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某产品月产量和月销量情况:每月固定成本2.8万元,每生产100台的生产成本为6千元(总成本为固定成本与生产成本之和),销售收人S(万元)与产量x(百台)的函数关系为:S=-0.4x2+3.8x,假设该产品能全部销售,要赢利,每月产量应控制在什么范围?每月生产多少台产品时利润最多?这时每台售价是多少?

查看答案和解析>>

同步练习册答案