精英家教网 > 高中数学 > 题目详情
9.已知$sin(α+\frac{π}{4})=\frac{{\sqrt{5}}}{5}$,$cos(β+\frac{3π}{4})=-\frac{{\sqrt{10}}}{10}$,$α,β∈(\frac{π}{4},\frac{3π}{4})$,求cos(α+β)的值.

分析 结合角的范围可求cos($α+\frac{π}{4}$),sin($β+\frac{3π}{4}$),利用两角和与差的余弦函数公式即可求cos(α+β)=-cos[($α+\frac{π}{4}$)+($β+\frac{3π}{4}$)]的值.

解答 解:由$α∈(\frac{π}{4},\frac{3π}{4})$,得$α+\frac{π}{4}∈$($\frac{π}{2}$,π),故cos($α+\frac{π}{4}$)=-$\frac{2\sqrt{5}}{5}$,…(3分)
由$β∈(\frac{π}{4},\frac{3π}{4})$,得$β+\frac{3π}{4}$∈(π,$\frac{3π}{2}$),故sin($β+\frac{3π}{4}$)=-$\frac{3\sqrt{10}}{10}$,…(6分)
所以cos(α+β)=-cos[($α+\frac{π}{4}$)+($β+\frac{3π}{4}$)]…(8分)
=-[cos($α+\frac{π}{4}$)cos($β+\frac{3π}{4}$)-sin($α+\frac{π}{4}$)sin($β+\frac{3π}{4}$)]
=-[(-$\frac{2\sqrt{5}}{5}$)×$(-\frac{\sqrt{10}}{10})-\frac{\sqrt{5}}{5}×(-\frac{3\sqrt{10}}{10})$]
=-$\frac{\sqrt{2}}{2}$…(12分)

点评 本题主要考查了两角和与差的余弦函数公式的应用,解题时要注意分析角的范围,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知a,b>0,a+b=2,x,y>0,求证:(ax+by)(bx+ay)≥4xy.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合M={(x,y)|x-3≤y≤x-1},N={P|PA≥$\sqrt{2}$PB,A(-1,0),B(1,0)},则表示M∩N的图形面积为$\frac{4π}{3}$+2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,三边a,b,c满足a2=b2+c2+bc,则角A等于(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等比数列{an}中,已知a3=6,S3=18,则公比q=1或$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若坐标原点到抛物线x2=$\frac{1}{m}$y的准线距离为2,则m=(  )
A.$\frac{1}{8}$B.±$\frac{1}{8}$C.8D.±8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.关于函数f(x)=sinx+cosx,下列命题正确的是(  )
A.f(x)最大值为2
B.y=|f(x)|的最小正周期为2π
C.f(x)的图象关于点$(\frac{π}{4},0)$对称
D.f(x)的图象向左平移$\frac{π}{4}$个单位后对应的函数是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=ex+x2+2x+1与g(x)的图象关于直线3x-y-2=0对称,P,Q分别是函数f(x),g(x)图象上的动点,则|PQ|的最小值为(  )
A.$\frac{2\sqrt{10}}{5}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{6\sqrt{10}}{10}$D.$\frac{4\sqrt{10}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知平行四边形ABCD的周长为18,又AC=$\sqrt{65}$,BD=$\sqrt{17}$,则该平行四边形的面积是(  )
A.32B.17.5C.18D.16

查看答案和解析>>

同步练习册答案