精英家教网 > 高中数学 > 题目详情
18.函数f(x)=ex+x2+2x+1与g(x)的图象关于直线3x-y-2=0对称,P,Q分别是函数f(x),g(x)图象上的动点,则|PQ|的最小值为(  )
A.$\frac{2\sqrt{10}}{5}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{6\sqrt{10}}{10}$D.$\frac{4\sqrt{10}}{5}$

分析 根据函数f(x)和g(x)关于直线3x-y-2=0对称,则利用导数求出函数f(x)到直线的距离的最小值即可

解答 解:∵f(x)=ex+x2+2x+1,
∴f′(x)=ex+2x+2,
∵函数f(x)的图象与g(x)关于直线3x-y-2=0对称,
∴函数f(x)到直线的距离的最小值的2倍,即可|PQ|的最小值.
直线3x-y-2=0的斜率k=3,
由f′(x)=ex+2x+2=3,
即ex+2x-1=0,
解得x=0,
此时对于的切点坐标为(0,2),
∴过函数f(x)图象上点(0,2)的切线平行于直线y=3x-2,
两条直线间距离d就是函数f(x)图象到直线3x-y-2=0的最小距离,
此时d=$\frac{|0-2-2|}{\sqrt{1+9}}$=$\frac{4}{\sqrt{10}}$=$\frac{2\sqrt{10}}{5}$,
由函数图象的对称性可知,|PQ|的最小值为2d=$\frac{4\sqrt{10}}{5}$,
故选:D.

点评 本题主要考查导数的应用以及两点间距离的求解,根据函数的对称性求出函数f(x)到直线的距离是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.下列命题中是真命题的是③④.
①?x∈N,x3<x2
②所有可以被5整除的整数,末尾数字都是0;
③“若m>0,则x2+x-m=0有实根”的逆否命题;
④“若x2+y2≠0,则x,y不全为零”的否命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$sin(α+\frac{π}{4})=\frac{{\sqrt{5}}}{5}$,$cos(β+\frac{3π}{4})=-\frac{{\sqrt{10}}}{10}$,$α,β∈(\frac{π}{4},\frac{3π}{4})$,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线y=$\frac{1}{x}$在点(2,$\frac{1}{2}$)的切线方程是(  )
A.$\frac{1}{4}$x+y=0B.$\frac{1}{4}$x-y=0C.$\frac{1}{4}$x+y+1=0D.$\frac{1}{4}$x+y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线f(x)=x3+ax+b在点(2,-6)处的切线方程是13x-y-32=0.
(Ⅰ)求a,b的值;
(Ⅱ)如果曲线y=f(x)的某一切线与直线y=-$\frac{1}{4}$x+3垂直,求切点坐标与切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.实数m为何值时,复数z=$\frac{{m}^{2}+m-6}{m+5}$+(m2+8m+15)i
(Ⅰ)为实数;
(Ⅱ)为纯虚数;
(Ⅲ)对应点在第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设z∈C,|z|=1,则|z+$\sqrt{3}$+i|的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给出下列四个命题:
①函数f(x)=sin|x|不是周期函数;
②把函数f(x)=2sin2x图象上每个点的横坐标伸长到原来的4倍,然后再向右平移$\frac{π}{6}$个单位得到的函数解析式可以表示为$g(x)=2sin(\frac{1}{2}x-\frac{π}{6})$;
③函数f(x)=2sin2x-cosx-1的值域是[-2,1];
④已知函数f(x)=2cos2x,若存在实数x1、x2,使得对任意x都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为$\frac{π}{2}$;
其中正确命题的序号为①④(把你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x2-cosx,对于$[-\frac{π}{2},\frac{π}{2}]$上的任意x1,x2,有如下条件:①x1>x2;②$x_1^2>x_2^2$;③|x1|>x2,其中能使f(x)1>f(x2)恒成立的条件序号是(  )
A.B.C.D.以上都不对

查看答案和解析>>

同步练习册答案