精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=x2-cosx,对于$[-\frac{π}{2},\frac{π}{2}]$上的任意x1,x2,有如下条件:①x1>x2;②$x_1^2>x_2^2$;③|x1|>x2,其中能使f(x)1>f(x2)恒成立的条件序号是(  )
A.B.C.D.以上都不对

分析 先研究函数的性质,观察知函数是个偶函数,由于f′(x)=2x+sinx,在[0,$\frac{π}{2}$]上f′(x)>0,可推断出函数在y轴两边是左减右增,此类函数的特点是自变量离原点的位置越近,则函数值越小,欲使f(x1)>f(x2)恒成立,只需x1,到原点的距离比x2,到原点的距离大即可,由此可得出|x1|>|x2|,在所给三个条件中找符合条件的即可

解答 解:函数f(x)为偶函数,f′(x)=2x+sinx,
当0<x≤$\frac{π}{2}$时,0<sinx≤1,0<2x≤π,
∴f′(x)>0,函数f(x)在[0,$\frac{π}{2}$]上为单调增函数,
由偶函数性质知函数在[-$\frac{π}{2}$,0]上为减函数.
当x12>x22时,得|x1|>|x2|≥0,
∴f(|x1|)>f(|x2|),由函数f(x)在上[-$\frac{π}{2}$,$\frac{π}{2}$]为偶函数得f(x1)>f(x2),故②成立.
∵$\frac{π}{3}$>-$\frac{π}{3}$,而f($\frac{π}{3}$)=f($\frac{π}{3}$),
∴①不成立,同理可知③不成立.
故选:B.

点评 本题考查函数的性质奇偶性与单调性,属于利用性质推导出自变量的大小的问题,本题的解题方法新颖,判断灵活,方法巧妙,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数f(x)=ex+x2+2x+1与g(x)的图象关于直线3x-y-2=0对称,P,Q分别是函数f(x),g(x)图象上的动点,则|PQ|的最小值为(  )
A.$\frac{2\sqrt{10}}{5}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{6\sqrt{10}}{10}$D.$\frac{4\sqrt{10}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知平行四边形ABCD的周长为18,又AC=$\sqrt{65}$,BD=$\sqrt{17}$,则该平行四边形的面积是(  )
A.32B.17.5C.18D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知空间三点A(0,2,3),B (-2,1,6),C(1,-1,5)
(1)求以AB,AC为邻边的平行四边形面积  
(2)求平面ABC一个法向量  
(3)若向量$\overrightarrow a$分别与$\overrightarrow{AB}\;,\;\overrightarrow{AC}$垂直,且$|{\overrightarrow a}|=\sqrt{3}$求$\overrightarrow a$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时f(x)=1-x2,函数$g(x)=\left\{\begin{array}{l}lgx,x>0\\|\frac{1}{2}x+2|,x≤0\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-5,5]内的零点个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知α为钝角,$sin(\frac{π}{4}+α)=\frac{3}{4}$,则cosα=$\frac{{3\sqrt{2}-\sqrt{14}}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式组$\left\{\begin{array}{l}{y≤x}\\{y≥0}\\{x≤4}\end{array}\right.$,所表示的平面区域的面积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在(x2+$\frac{1}{{x}^{2}}$)6的展开式中.求:
(Ⅰ)第3项的二项式系数;
(Ⅱ)常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设关于x的方程x2-ax-1=0和x2-x-2a=0的实根分别为x1、x2和x3、x4,若x1<x3<x2<x4,则实数a的取值范围为$(0,\frac{3-\sqrt{3}}{2})$.

查看答案和解析>>

同步练习册答案