精英家教网 > 高中数学 > 题目详情
18.设关于x的方程x2-ax-1=0和x2-x-2a=0的实根分别为x1、x2和x3、x4,若x1<x3<x2<x4,则实数a的取值范围为$(0,\frac{3-\sqrt{3}}{2})$.

分析 由x2-ax-1=0得ax=x2-1,由x2-x-2a=0得2a=x2-x,构造函数y=x2-x和y=2x-$\frac{2}{x}$,在同一坐标系中作出两个函数得图象,并求出x2-x=2x-$\frac{2}{x}$的解即两图象交点的横坐标,结合条件和函数的图象求出a的取值范围.

解答 解:由x2-x-2a=0得2a=x2-x,
由x2-ax-1=0(x≠0)得ax=x2-1,则2a=2x-$\frac{2}{x}$,
作出函数y=x2-x和y=2x-$\frac{2}{x}$的函数图象如下图:
由x2-x=2x-$\frac{2}{x}$得,x2-3x+$\frac{2}{x}$=0,则$\frac{{x}^{3}-3{x}^{2}+2}{x}$=0,
∴$\frac{{(x-1)(x}^{2}-2x-2)}{x}$=0,
解得x=1或x=1$+\sqrt{3}$或x=$1-\sqrt{3}$,
∵x1<x3<x2<x4,且当x=$1-\sqrt{3}$时,可得a=$\frac{3-\sqrt{3}}{2}$,
∴由图可得,0<a<$\frac{3-\sqrt{3}}{2}$,
故答案为:$(0,\frac{3-\sqrt{3}}{2})$.

点评 本题考查方程的根、函数的零点与函数图象交点之间的转化,以及构造函数法、数形结合思想,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x2-cosx,对于$[-\frac{π}{2},\frac{π}{2}]$上的任意x1,x2,有如下条件:①x1>x2;②$x_1^2>x_2^2$;③|x1|>x2,其中能使f(x)1>f(x2)恒成立的条件序号是(  )
A.B.C.D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设sinα与cosα是方程4x2+2$\sqrt{6}$x+m=0的两根,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某班有学生50人,其中男同学30人,用分层抽样的方法从该班抽取5人去参加某社区服务活动.
(1)求从该班男女同学在各抽取的人数;
(2)从抽取的5名同学中任选2名谈此活动的感受,求选出的2名同学中恰有1名男同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{OA}$=(2,-1),$\overrightarrow{OB}$=(3,2),$\overrightarrow{OC}$=(M,2M+1),若点A,B,C能构成三角形,
(1)求实数m满足的条件;
(2)若△ABC为直角三角形,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a4=15,且an+1=2an+1(n∈N*
(1)求a1、a2、a3的值;
(2)求证:数列{an+1}是等比数列,并求数列{an}的通项公式an
(3)若bn=$\frac{n}{{a}_{n}+1}$(n∈N*)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-3x+2=0},B={x|mx-1=0},若B?A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,sinx),$\overrightarrow{c}$=(-1,0)
(1)若x=$\frac{π}{3}$,求$\overrightarrow{a}$与$\overrightarrow{c}$的夹角θ;
(2)若x∈[-$\frac{3π}{8}$,$\frac{π}{4}$],f(x)=λ$\overrightarrow{a}$•$\overrightarrow{b}$的最大值为$\frac{1}{2}$,求λ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数f(x)=cos2x(x∈R)的图象沿向量$\overrightarrow{a}$平移后,所得曲线对应的函数在区间[$\frac{π}{3}$,$\frac{2π}{3}$]内单调递增,且在该区间的最大值为1,则向量$\overrightarrow{a}$可能是(  )
A.(-$\frac{π}{6}$,$\frac{1}{2}$)B.($\frac{π}{6}$,$\frac{1}{2}$)C.($\frac{π}{3}$,$\frac{3}{2}$)D.(-$\frac{π}{3}$,$\frac{3}{2}$)

查看答案和解析>>

同步练习册答案