分析 圆心C(0,1)到椭圆上的点Q(2cosα,sinα)(α∈[0,2π))的距离d=$\sqrt{(2cosα)^{2}+(sinα-1)^{2}}$=$\sqrt{\frac{16}{3}-3(sinα+\frac{1}{3})^{2}}$,可得P,Q两点间的最大距离是dmax+r.
解答 解:圆心C(0,1)到椭圆上的点Q(2cosα,sinα)(α∈[0,2π))的距离d=$\sqrt{(2cosα)^{2}+(sinα-1)^{2}}$=$\sqrt{\frac{16}{3}-3(sinα+\frac{1}{3})^{2}}$≤$\frac{4\sqrt{3}}{3}$,当且仅当$sinα=-\frac{1}{3}$时取等号.
∴P,Q两点间的最大距离是d+r=$\frac{4\sqrt{3}}{3}$+$\sqrt{3}$=$\frac{7\sqrt{3}}{3}$.
故答案为:$\frac{7\sqrt{3}}{3}$.
点评 本题考查了椭圆的标准方程及其性质、两点之间的距离公式、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1 | B. | $\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1 | D. | $\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{5}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{11}$ | B. | $\frac{21}{11}$ | C. | $\frac{13}{9}$ | D. | $\frac{17}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {4} | B. | {0,1,2,3} | C. | {3} | D. | {0,1,2,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $-\frac{15}{2}$ | C. | $\frac{15}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1,0,1} | B. | {-3,-2,-1,0} | C. | {-2,-1,0} | D. | {-3,-2,-1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com