分析 (1)由题意可知x2-a(2-a)x-b<0的解集为(-1,2),则-1,2是方程x2-a(2-a)x-b的两根,根据根与系数的关系即可求得a,b的值.
(2)由f(1)>0,可得b>a2-2a-1=(a-1)2-2≥-2,即可求得b的取值范围.
解答 解:(1)由题可知x2-a(2-a)x-b<0的解集为(-1,2),
则-1,2是方程x2-a(2-a)x-b的两根,由韦达定理可知化为-1+2=a(2-a),-1×3=-b,
解得a=1,b=3,
(2)∵f(1)=1+a(2-a)+b>0,
∴b>a2-2a-1=(a-1)2-2≥-2,
∴b>-2,
点评 掌握一元二次不等式的解集与相应的一元二次方程的根的关系是正确求得一元二次不等式的解集的关键.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$<a<2且a≠1 | B. | 0<a<$\frac{1}{2}$或1<a<2 | C. | 1<a<2 | D. | a>2或0<a<$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-4)2+(y-6)2=6 | B. | (x±4)2+(y-6)2=6 | C. | (x-4)2+(y-6)2=36 | D. | (x±4)2+(y-6)2=36 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,使得${3^{x_0}}≤0$ | |
| B. | ?x∈R+,lgx>0 | |
| C. | “$x=\frac{π}{6}$”是“$cosx=\frac{{\sqrt{3}}}{2}$”的必要不充分条件 | |
| D. | “x=1”是“x≥1”的充分不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com