精英家教网 > 高中数学 > 题目详情
3.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.
(Ⅰ)求甲获得这次比赛胜利的概率;
(Ⅱ)求经过5局比赛,比赛结束的概率.

分析 (Ⅰ)记Ai表示事件:第i局甲获胜,i=3,4,5,Bj表示事件:第j局乙获胜,j=3,4.记B表示事件:甲获得这次比赛的胜利.因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A3•A4+B3•A4•A5+A3•B4•A5,由于各局比赛结果相互独立,由此能求出甲获得这次比赛胜利的概率.
(Ⅱ)经过5局比赛,甲获胜的概率为P(B3•A4•A5)+P(A3•B4•A5);经过5局比赛,乙获胜的概率为P(A3•B4•B5)+P(B3•A4•B5),由此能求出经过5局比赛,比赛结束的概率.

解答 解:(Ⅰ)记Ai表示事件:第i局甲获胜,i=3,4,5,Bj表示事件:第j局乙获胜,j=3,4.
记B表示事件:甲获得这次比赛的胜利.
因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,
从而B=A3•A4+B3•A4•A5+A3•B4•A5
由于各局比赛结果相互独立,
故P(B)=P(A3•A4)+P(B3•A4•A5)+P(A3•B4•A5
=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5
=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648.
(Ⅱ)经过5局比赛,甲获胜的概率为
P(B3•A4•A5)+P(A3•B4•A5)=0.4×0.6×0.6+0.6×0.4×0.6=0.288;
经过5局比赛,乙获胜的概率为
P(A3•B4•B5)+P(B3•A4•B5)=0.6×0.4×0.4+0.4×0.6×0.4=0.192.
所以经过5局比赛,比赛结束的概率为0.288+0.192=0.48.

点评 本题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,解题之前,要分析明确事件间的关系,一般先按互斥事件分情况,再由相互独立事件的概率公式,进行计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.有一长、宽分别为50m、30m的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同.一人在池中心(对角线交点)处呼唤工作人员,其声音可传出$15\sqrt{2}m$,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是(  )
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{3π}{16}$D.$\frac{12+3π}{32}$

查看答案和解析>>

科目:高中数学 来源:2016-2017学年山西忻州一中高一上学期新生摸底数学试卷(解析版) 题型:解答题

某商店销售10台型和20台型电脑的利润为4000元,销售20台型和10台型电脑的利润为3500元.

(1)求每台型电脑和型电脑的销售利润;

(2)该商店计划一次购进两种型号的电脑共100台,其中型电脑的进货量不超过A型电脑的2倍.设购进掀电脑台,这100台电脑的销售总利润为元.

①求的关系式;

②该商店购进型、型各多少台,才能使销售利润最大?

(3)实际进货时,厂家对型电脑出厂价下调)元,且限定商店最多购进型电脑70台.若商店保持两种电脑的售价不变,请你以上信息及(2)中的条件,设计出使这100台电脑销售总利润最大的进货方案.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x>0,求f(x)=$\frac{12}{x}$+3x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={x|x2-x-2<0},B={x|$\frac{1}{x-1}$≤1},则A∩B=(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,a,b,c分别为角A,B,C的对边,且$\frac{c}{b}$=-3cosA,tanB=$\frac{1}{2}$.
(1)求tanA;
(2)若b=$\sqrt{5}$,求sinC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a=log0.20.3,b=log0.30.2,c=1,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中数学 来源:2016-2017学年山西忻州一中高一上学期新生摸底数学试卷(解析版) 题型:解答题

解方程:.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知一元二次方程ax2+bx+c=0的解是-2,3,且a<0,那么ax2+bx+c>0的解集是(-2,3).

查看答案和解析>>

同步练习册答案